首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Nonrigid motion analysis based on dynamic refinement of finite element models
【24h】

Nonrigid motion analysis based on dynamic refinement of finite element models

机译:基于动态有限元模型的非刚性运动分析

获取原文
获取原文并翻译 | 示例

摘要

We propose new algorithms for accurate nonrigid motion tracking. Given an initial model representing general knowledge of the object, a set of sparse correspondences, and incomplete or missing information about geometry or material properties, we can recover dense motion vectors using finite element models. The method is based on the iterative analysis of the differences between the actual and predicted behaviors. Unknown parameters are recovered using an iterative descent search for the best nonlinear finite element model that approximates nonrigid motion of the given object. During this search process, we not only estimate material properties, but also infer dense point correspondences from our initial set of sparse correspondences. Thus, during tracking, the model is refined which, in turn, improves tracking quality. Experimental results demonstrate the success of the proposed algorithm. Our work demonstrates the possibility of accurate quantitative analysis of nonrigid motion in range image sequences with objects consisting of multiple materials and 3D volumes.
机译:我们提出了用于精确的非刚性运动跟踪的新算法。给定一个表示对象常识的初始模型,一组稀疏对应关系以及关于几何或材料特性的不完整或缺失的信息,我们可以使用有限元模型来恢复密集的运动矢量。该方法基于对实际行为和预测行为之间差异的迭代分析。使用迭代下降搜索来搜索近似给定对象的非刚性运动的最佳非线性有限元模型,以恢复未知参数。在此搜索过程中,我们不仅会估计材料属性,而且还会从我们的稀疏对应关系的初始集合中推断出稠密点对应关系。因此,在跟踪过程中,对模型进行了改进,从而提高了跟踪质量。实验结果证明了该算法的成功。我们的工作证明了对范围包括由多种材料和3D体积组成的对象的距离图像序列中的非刚性运动进行准确定量分析的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号