首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Reconstructing surfaces by volumetric regularization using radial basis functions
【24h】

Reconstructing surfaces by volumetric regularization using radial basis functions

机译:使用径向基函数通过体积正则化重建曲面

获取原文
获取原文并翻译 | 示例

摘要

We present a new method of surface reconstruction that generates smooth and seamless models from sparse, noisy, nonuniform, and low resolution range data. Data acquisition techniques from computer vision, such as stereo range images and space carving, produce 3D point sets that are imprecise and nonuniform when compared to laser or optical range scanners. Traditional reconstruction algorithms designed for dense and precise data do not produce smooth reconstructions when applied to vision-based data sets. Our method constructs a 3D implicit surface, formulated as a sum of weighted radial basis functions. We achieve three primary advantages over existing algorithms: (1) the implicit functions we construct estimate the surface well in regions where there is little data, (2) the reconstructed surface is insensitive to noise in data acquisition because we can allow the surface to approximate, rather than exactly interpolate, the data, and (3) the reconstructed surface is locally detailed, yet globally smooth, because we use radial basis functions that achieve multiple orders of smoothness.
机译:我们提出了一种新的表面重建方法,该方法可以从稀疏,嘈杂,不均匀和低分辨率范围的数据生成平滑无缝的模型。与激光或光学距离扫描仪相比,来自计算机视觉的数据采集技术(如立体距离图像和空间雕刻)产生的3D点集不精确且不均匀。当设计用于密集和精确数据的传统重建算法应用于基于视觉的数据集时,不会产生平滑的重建。我们的方法构造了一个3D隐式曲面,该曲面由加权径向基函数的总和表示。与现有算法相比,我们获得了三个主要优点:(1)我们构造的隐式函数在数据很少的区域中很好地估计了表面,(2)重构的表面在数据采集中对噪声不敏感,因为我们可以让表面近似,而不是精确地插值数据,以及(3)重建的曲面是局部局部的,但全局平滑的,因为我们使用径向基函数来实现多个平滑度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号