首页> 外文期刊>Engineering with Computers >The numerical solution of nonlinear generalized Benjamin-Bona-Mahony-Burgers and regularized long-wave equations via the meshless method of integrated radial basis functions
【24h】

The numerical solution of nonlinear generalized Benjamin-Bona-Mahony-Burgers and regularized long-wave equations via the meshless method of integrated radial basis functions

机译:通过无网径向函数的无线方法的非线性广义本杰明-BONA-BAN-BAN-BAN-BAN-BURGER和正则化长波方程的数值解

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a numerical technique is proposed for solving the nonlinear generalized Benjamin-Bona-Mahony-Burgers and regularized long-wave equations. The used numerical method is based on the integrated radial basis functions (IRBFs). First, the time derivative has been approximated using a finite difference scheme. Then, the IRBF method is developed to approximate the spatial derivatives. The two-dimensional version of these equations is solved using the presented method on different computational geometries such as the rectangular, triangular, circular and butterfly domains and also other irregular regions. The aim of this paper is to show that the integrated radial basis function method is also suitable for solving nonlinear partial differential equations. Numerical examples confirm the efficiency of the proposed scheme.
机译:本文提出了一种用于求解非线性广义本杰明-NAHA-MAH-BARGERS和正则化的长波方程的数值技术。使用的数值方法基于集成的径向基函数(IRBFS)。首先,使用有限差分方案近似时间衍生。然后,开发了IRBF方法以近似空间衍生物。使用诸如矩形,三角形,圆形和蝴蝶域等不同计算几何形状的所提出的方法来解决这些等式的二维版本,以及其他不规则区域。本文的目的是表明,集成径向基函数方法也适用于求解非线性偏微分方程。数值例子证实了所提出的方案的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号