首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Enhanced perceptual distance functions and indexing for image replica recognition
【24h】

Enhanced perceptual distance functions and indexing for image replica recognition

机译:增强的感知距离功能和索引,可识别图像副本

获取原文
获取原文并翻译 | 示例

摘要

The proliferation of digital images and the widespread distribution of digital data that has been made possible by the Internet has increased problems associated with copyright infringement on digital images. Watermarking schemes have been proposed to safeguard copyrighted images, but watermarks are vulnerable to image processing and geometric distortions and may not be very effective. Thus, the content-based detection of pirated images has become an important application. In this paper, we discuss two important aspects of such a replica detection system: distance functions for similarity measurement and scalability. We extend our previous work on perceptual distance functions, which proposed the Dynamic Partial Function (DPF), and present enhanced techniques that overcome the limitations of DPF. These techniques include the Thresholding, Sampling, and Weighting schemes. Experimental evaluations show superior performance compared to DPF and other distance functions. We then address the issue of using these perceptual distance functions to efficiently detect replicas in large image data sets. The problem of indexing is made challenging by the high-dimensionality and the nonmetric nature of the distance functions. We propose using Locality Sensitive Hashing (LSH) to index images while using the above perceptual distance functions and demonstrate good performance through empirical studies on a very large database of diverse images.
机译:互联网已使数字图像的激增和数字数据的广泛分发增加了与侵犯数字图像版权相关的问题。已经提出了加水印方案以保护受版权保护的图像,但是水印容易受到图像处理和几何失真的影响,并且可能不是很有效。因此,基于内容的盗版图像检测已经成为重要的应用。在本文中,我们讨论了此类副本检测系统的两个重要方面:用于相似性测量的距离函数和可伸缩性。我们扩展了关于感知距离函数的先前工作,该工作提出了动态局部函数(DPF),并提出了克服DPF局限性的增强技术。这些技术包括阈值,采样和加权方案。实验评估表明,与DPF和其他距离函数相比,其性能更高。然后,我们解决了使用这些感知距离函数有效地检测大型图像数据集中的副本的问题。索引问题由于距离函数的高维和非度量性质而变得具有挑战性。我们建议使用局部敏感哈希(LSH)来索引图像,同时使用上述感知距离函数,并通过对不同图像的大型数据库进行实证研究来证明良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号