首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Fingerprint matching based on global comprehensive similarity
【24h】

Fingerprint matching based on global comprehensive similarity

机译:基于全局全面相似度的指纹匹配

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a novel algorithm based on global comprehensive similarity with three steps. To describe the Euclidean space-based relative features among minutiae, we first build a minutia-simplex that contains a pair of minutiae as well as their associated textures, with its transformation-variant and invariant relative features employed for the comprehensive similarity measurement and parameter estimation, respectively. By the second step, we use the ridge-based nearest neighborhood among minutiae to represent the ridge-based relative features among minutiae. With these ridge-based relative features, minutiae are grouped according to their affinity with a ridge. The Euclidean space-based and ridge-based relative features among minutiae reinforce each other in the representation of a fingerprint. Finally, we model the relationship between transformation and the comprehensive similarity between two fingerprints in terms of histogram for initial parameter estimation. Through these steps, our experiment shows that the method mentioned above is both effective and suitable for limited memory AFIS owing to its less than 1k byte template size.
机译:本文介绍了一种基于全局综合相似度的三步算法。为了描述细节中的欧几里得基于天基的相对特征,我们首先构建一个包含一对细节及其相关纹理的细节简单体,并将其变换变量和不变相对特征用于全面的相似性测量和参数估计, 分别。第二步,我们使用细节上的基于岭的最近邻域来表示细节上的基于岭的相对特征。通过这些基于山脊的相对特征,可以将细节项与山脊的亲和性分组。小细节之间的欧几里得基于空间和基于岭的相对特征在指纹表示中彼此增强。最后,我们根据直方图对转换和两个指纹之间的全面相似度之间的关系进行建模,以进行初始参数估计。通过这些步骤,我们的实验表明,上述方法由于小于1k字节模板大小,因此既有效又适用于有限的内存AFIS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号