首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Estimation of Nonlinear Errors-in-Variables Models for Computer Vision Applications
【24h】

Estimation of Nonlinear Errors-in-Variables Models for Computer Vision Applications

机译:计算机视觉应用中的非线性变量误差模型的估计

获取原文
获取原文并翻译 | 示例

摘要

In an errors-in-variables (EIV) model, all the measurements are corrupted by noise. The class of EIV models with constraints separable into the product of two nonlinear functions, one solely in the variables and one solely in the parameters, is general enough to represent most computer vision problems. We show that the estimation of such nonlinear EIV models can be reduced to iteratively estimating a linear model having point dependent, i.e., heteroscedastic, noise process. Particular cases of the proposed heteroscedastic errors-in-variables (HEIV) estimator are related to other techniques described in the vision literature: the Sampson method, renormalization, and the fundamental numerical scheme. In a wide variety of tasks, the HEIV estimator exhibits the same, or superior, performance as these techniques and has a weaker dependence on the quality of the initial solution than the Levenberg-Marquardt method, the standard approach toward estimating nonlinear models.
机译:在变量误差(EIV)模型中,所有测量结果都会被噪声破坏。具有约束条件的EIV模型的类别可分为两个非线性函数(一个单独包含在变量中,一个单独包含在参数中)的乘积,足以代表大多数计算机视觉问题。我们表明,可以将这种非线性EIV模型的估计简化为迭代地估计具有点相关(即,异方差)噪声过程的线性模型。拟议的异方差变量误差(HEIV)估计器的特殊情况与视觉文献中描述的其他技术有关:Sampson方法,重新归一化和基本数值方案。在各种各样的任务中,HEIV估计器表现出与这些技术相同或更高的性能,并且比初始估计非线性模型的标准方法Levenberg-Marquardt方法对初始解决方案的质量的依赖性更弱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号