首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Unsupervised Statistical Segmentation of Nonstationary Images Using Triplet Markov Fields
【24h】

Unsupervised Statistical Segmentation of Nonstationary Images Using Triplet Markov Fields

机译:使用三重态马尔可夫场的非平稳图像非监督统计分割

获取原文
获取原文并翻译 | 示例

摘要

Recent developments in statistical theory and associated computational techniques have opened new avenues for image modeling as well as for image segmentation techniques. Thus, a host of models have been proposed and the ones which have probably received considerable attention are the hidden Markov fields (HMF) models. This is due to their simplicity of handling and their potential for providing improved image quality. Although these models provide satisfying results in the stationary case, they can fail in the nonstationary one. In this paper, we tackle the problem of modeling a nonstationary hidden random field and its effect on the unsupervised statistical image segmentation. We propose an original approach, based on the recent triplet Markov field (TMF) model, which enables one to deal with nonstationary class fields. Moreover, the noise can be correlated and possibly non-Gaussian. An original parameter estimation method which uses the Pearson system to find the natures of the noise margins, which can vary with the class, is also proposed and used to perform unsupervised segmentation of such images. Experiments indicate that the new model and related processing algorithm can improve the results obtained with the classical ones.
机译:统计理论和相关计算技术的最新发展为图像建模以及图像分割技术开辟了新途径。因此,已经提出了许多模型,并且可能引起相当多关注的是隐马尔可夫场(HMF)模型。这是由于其处理简单以及其提供改进的图像质量的潜力。尽管这些模型在固定情况下提供令人满意的结果,但在非固定情况下它们可能会失败。在本文中,我们解决了对非平稳隐藏随机场建模及其对无监督统计图像分割的影响的问题。基于最近的三重态马尔可夫场(TMF)模型,我们提出了一种原始方法,该方法可以处理非平稳类场。而且,噪声可以是相关的,并且可能是非高斯的。还提出了一种原始的参数估计方法,该方法使用Pearson系统来查找噪声容限的性质,该性质会随类别的不同而变化,并用于执行此类图像的无监督分割。实验表明,新模型和相关处理算法可以改善经典模型的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号