首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Face Relighting from a Single Image under Arbitrary Unknown Lighting Conditions
【24h】

Face Relighting from a Single Image under Arbitrary Unknown Lighting Conditions

机译:在任意未知光照条件下从单个图像对脸部重新照明

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a new method to modify the appearance of a face image by manipulating the illumination condition, when the face geometry and albedo information is unknown. This problem is particularly difficult when there is only a single image of the subject available. Recent research demonstrates that the set of images of a convex Lambertian object obtained under a wide variety of lighting conditions can be approximated accurately by a low-dimensional linear subspace using a spherical harmonic representation. Moreover, morphable models are statistical ensembles of facial properties such as shape and texture. In this paper, we integrate spherical harmonics into the morphable model framework by proposing a 3D spherical harmonic basis morphable model (SHBMM). The proposed method can represent a face under arbitrary unknown lighting and pose simply by three low-dimensional vectors, i.e., shape parameters, spherical harmonic basis parameters, and illumination coefficients, which are called the SHBMM parameters. However, when the image was taken under an extreme lighting condition, the approximation error can be large, thus making it difficult to recover albedo information. In order to address this problem, we propose a subregion-based framework that uses a Markov random field to model the statistical distribution and spatial coherence of face texture, which makes our approach not only robust to extreme lighting conditions, but also insensitive to partial occlusions. The performance of our framework is demonstrated through various experimental results, including the improved rates for face recognition under extreme lighting conditions.
机译:在本文中,我们提出了一种在人脸几何形状和反照率信息未知的情况下通过控制照明条件来修改人脸图像外观的新方法。当只有单个对象图像可用时,此问题特别困难。最近的研究表明,在低照度下线性子空间可以使用球谐函数表示,可以在各种光照条件下获得的凸朗伯对象的图像集准确逼近。此外,可变形模型是面部属性(例如形状和纹理)的统计集合。在本文中,我们通过提出3D球面谐波基础可变形模型(SHBMM),将球面谐波整合到可变形模型框架中。所提出的方法可以在任意未知照明下表示人脸,并且仅通过三个低维向量,即形状参数,球谐基础参数和照明系数,即SHBMM参数,就可以构成姿势。然而,当在极端照明条件下拍摄图像时,近似误差可能很大,从而使得难以恢复反照率信息。为了解决这个问题,我们提出了一个基于子区域的框架,该框架使用马尔可夫随机场来建模面部纹理的统计分布和空间相干性,这使我们的方法不仅对极端光照条件具有鲁棒性,而且对部分遮挡不敏感。我们通过各种实验结果证明了我们框架的性能,包括在极端光照条件下提高人脸识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号