首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics
【24h】

Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics

机译:在任意未知照明下使用球谐函数从单个训练图像中识别人脸

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose two novel methods for face recognition under arbitrary unknown lighting by using spherical harmonics illumination representation, which require only one training image per subject and no 3D shape information. Our methods are based on the result which demonstrated that the set of images of a convex Lambertian object obtained under a wide variety of lighting conditions can be approximated accurately by a low-dimensional linear subspace. We provide two methods to estimate the spherical harmonic basis images spanning this space from just one image. Our first method builds the statistical model based on a collection of 2D basis images. We demonstrate that, by using the learned statistics, we can estimate the spherical harmonic basis images from just one image taken under arbitrary illumination conditions if there is no pose variation. Compared to the first method, the second method builds the statistical models directly in 3D spaces by combining the spherical harmonic illumination representation and a 3D morphable model of human faces to recover basis images from images across both poses and illuminations. After estimating the basis images, we use the same recognition scheme for both methods: we recognize the face for which there exists a weighted combination of basis images that is the closest to the test face image. We provide a series of experiments that achieve high recognition rates, under a wide range of illumination conditions, including multiple sources of illumination. Our methods achieve comparable levels of accuracy with methods that have much more onerous training data requirements. Comparison of the two methods is also provided.
机译:在本文中,我们提出了两种新颖的方法,通过使用球谐谐波照明表示,在任意未知光照下进行人脸识别,每个对象仅需要一个训练图像,而无需3D形状信息。我们的方法基于结果表明,在低照度的线性子空间中,可以在各种照明条件下获得的凸朗伯对象的图像集准确地近似。我们提供了两种方法来仅从一张图像中估计跨越该空间的球谐基础图像。我们的第一种方法基于2D基础图像的集合来构建统计模型。我们证明,利用学习到的统计数据,如果没有姿势变化,我们可以从任意光照条件下拍摄的一张图像中估计球谐基图像。与第一种方法相比,第二种方法通过将球面谐波照明表示与人脸的3D可变形模型相结合,直接从3D空间中建立统计模型,从而从姿势和照明中的图像中恢复基本图像。在估计基础图像之后,我们对两种方法使用相同的识别方案:我们识别出存在与测试面孔图像最接近的基础图像加权组合的人脸。我们提供了一系列实验,可在多种照明条件下(包括多种照明源)实现较高的识别率。我们的方法与需要更多繁重的训练数据的方法相比,可达到可比的准确性水平。还提供了两种方法的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号