首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Deformed Lattice Detection in Real-World Images Using Mean-Shift Belief Propagation
【24h】

Deformed Lattice Detection in Real-World Images Using Mean-Shift Belief Propagation

机译:使用均值漂移置信传播的真实图像中的变形晶格检测

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel and robust computational framework for automatic detection of deformed 2D wallpaper patterns in real-world images. The theory of 2D crystallographic groups provides a sound and natural correspondence between the underlying lattice of a deformed wallpaper pattern and a degree-4 graphical model. We start the discovery process with unsupervised clustering of interest points and voting for consistent lattice unit proposals. The proposed lattice basis vectors and pattern element contribute to the pairwise compatibility and joint compatibility (observation model) functions in a Markov Random Field (MRF). Thus, we formulate the 2D lattice detection as a spatial, multitarget tracking problem, solved within an MRF framework using a novel and efficient Mean-Shift Belief Propagation (MSBP) method. Iterative detection and growth of the deformed lattice are interleaved with regularized thin-plate spline (TPS) warping, which rectifies the current deformed lattice into a regular one to ensure stability of the MRF model in the next round of lattice recovery. We provide quantitative comparisons of our proposed method with existing algorithms on a diverse set of 261 real-world photos to demonstrate significant advances in accuracy and speed over the state of the art in automatic discovery of regularity in real images.
机译:我们提出了一种新颖而强大的计算框架,用于自动检测真实世界图像中的变形2D墙纸图案。 2D晶体学的理论在变形墙纸图案的基础晶格和4度图形模型之间提供了自然而自然的对应关系。我们从无监督的兴趣点聚类开始投票,然后投票表决一致的晶格单元提案。提出的晶格基向量和图案元素有助于马尔可夫随机场(MRF)中的成对兼容性和联合兼容性(观测模型)功能。因此,我们将二维晶格检测公式化为空间,多目标跟踪问题,并使用新颖有效的均值漂移置信度传播(MSBP)方法在MRF框架内解决了该问题。变形晶格的迭代检测和生长与规则化薄板样条(TPS)扭曲交织,后者将当前的变形晶格校正为规则晶格,以确保MRF模型在下一轮晶格恢复中的稳定性。我们在261张真实世界的照片上提供了与现有算法的拟议方法的定量比较,以证明在自动发现真实图像中的规律性方面,与现有技术相比,准确性和速度有了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号