首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Synergy between Object Recognition and Image Segmentation Using the Expectation-Maximization Algorithm
【24h】

Synergy between Object Recognition and Image Segmentation Using the Expectation-Maximization Algorithm

机译:使用期望最大化算法的目标识别与图像分割之间的协同作用

获取原文
获取原文并翻译 | 示例

摘要

In this work, we formulate the interaction between image segmentation and object recognition in the framework of the Expectation-Maximization (EM) algorithm. We consider segmentation as the assignment of image observations to object hypotheses and phrase it as the E-step, while the M-step amounts to fitting the object models to the observations. These two tasks are performed iteratively, thereby simultaneously segmenting an image and reconstructing it in terms of objects. We model objects using Active Appearance Models (AAMs) as they capture both shape and appearance variation. During the E-step, the fidelity of the AAM predictions to the image is used to decide about assigning observations to the object. For this, we propose two top-down segmentation algorithms. The first starts with an oversegmentation of the image and then softly assigns image segments to objects, as in the common setting of EM. The second uses curve evolution to minimize a criterion derived from the variational interpretation of EM and introduces AAMs as shape priors. For the M-step, we derive AAM fitting equations that accommodate segmentation information, thereby allowing for the automated treatment of occlusions. Apart from top-down segmentation results, we provide systematic experiments on object detection that validate the merits of our joint segmentation and recognition approach.
机译:在这项工作中,我们在期望最大化(EM)算法的框架内制定了图像分割与对象识别之间的相互作用。我们将分割视为对对象假设的图像观察的分配,并将其表述为E步,而M步相当于将对象模型拟合到观察。这两个任务是反复执行的,因此可以同时分割图像并根据对象重建图像。我们使用活动外观模型(AAM)为对象建模,因为它们可以捕获形状和外观变化。在E步期间,对图像的AAM预测的保真度用于决定将观察分配给对象。为此,我们提出了两种自上而下的分割算法。首先以图像的过度分割开始,然后像在EM的常规设置中一样,将图像段柔和地分配给对象。第二种方法使用曲线演化来最小化从EM的变分解释得出的标准,并引入AAM作为形状先验。对于M步,我们推导了容纳分段信息的AAM拟合方程,从而实现了遮挡的自动处理。除了自上而下的分割结果外,我们还提供了系统的目标检测实验,验证了我们联合分割和识别方法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号