首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models
【24h】

Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models

机译:使用分层贝叶斯模型的拥挤复杂场景中的无监督活动感知

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel unsupervised learning framework to model activities and interactions in crowded and complicated scenes. Hierarchical Bayesian models are used to connect three elements in visual surveillance: low-level visual features, simple "atomic" activities, and interactions. Atomic activities are modeled as distributions over low-level visual features, and multi-agent interactions are modeled as distributions over atomic activities. These models are learnt in an unsupervised way. Given a long video sequence, moving pixels are clustered into different atomic activities and short video clips are clustered into different interactions. In this paper, we propose three hierarchical Bayesian models, Latent Dirichlet Allocation (LDA) mixture model, Hierarchical Dirichlet Process (HDP) mixture model, and Dual Hierarchical Dirichlet Processes (Dual-HDP) model. They advance existing language models, such as LDA [1] and HDP [2]. Our data sets are challenging video sequences from crowded traffic scenes and train station scenes with many kinds of activities co-occurring. Without tracking and human labeling effort, our framework completes many challenging visual surveillance tasks of board interest such as: (1) discovering typical atomic activities and interactions; (2) segmenting long video sequences into different interactions; (3) segmenting motions into different activities; (4) detecting abnormality; and (5) supporting high-level queries on activities and interactions.
机译:我们提出了一种新颖的无监督学习框架,用于在拥挤和复杂的场景中对活动和交互进行建模。多层贝叶斯模型用于连接视觉监视中的三个元素:低级视觉特征,简单的“原子”活动和交互。原子活动被建模为低级视觉特征上的分布,多主体交互被建模为原子活动上的分布。这些模型是在无监督的情况下学习的。给定较长的视频序列,移动的像素将聚类为不同的原子活动,而较短的视频片段将聚类为不同的交互。在本文中,我们提出了三种分层贝叶斯模型:潜在狄利克雷分配(LDA)混合模型,分层狄利克雷过程(HDP)混合模型和双重分层狄利克雷过程(Dual-HDP)模型。他们改进了现有的语言模型,例如LDA [1]和HDP [2]。我们的数据集是来自拥挤的交通场景和火车站场景的挑战性视频序列,并且同时发生多种活动。在没有跟踪和人工标记的情况下,我们的框架完成了董事会关注的许多具有挑战性的视觉监视任务,例如:(1)发现典型的原子活动和相互作用; (2)将长视频序列分割为不同的交互; (3)将议案分为不同的活动; (4)检测异常; (5)支持有关活动和交互的高级查询。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号