首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >OBJCUT: Efficient Segmentation Using Top-Down and Bottom-Up Cues
【24h】

OBJCUT: Efficient Segmentation Using Top-Down and Bottom-Up Cues

机译:OBJCUT:使用自上而下和自下而上的提示进行有效的细分

获取原文
获取原文并翻译 | 示例

摘要

We present a probabilistic method for segmenting instances of a particular object category within an image. Our approach overcomes the deficiencies of previous segmentation techniques based on traditional grid conditional random fields (CRF), namely that 1) they require the user to provide seed pixels for the foreground and the background and 2) they provide a poor prior for specific shapes due to the small neighborhood size of grid CRF. Specifically, we automatically obtain the pose of the object in a given image instead of relying on manual interaction. Furthermore, we employ a probabilistic model which includes shape potentials for the object to incorporate top-down information that is global across the image, in addition to the grid clique potentials which provide the bottom-up information used in previous approaches. The shape potentials are provided by the pose of the object obtained using an object category model. We represent articulated object categories using a novel layered pictorial structures model. Nonarticulated object categories are modeled using a set of exemplars. These object category models have the advantage that they can handle large intraclass shape, appearance, and spatial variation. We develop an efficient method, OBJCUT, to obtain segmentations using our probabilistic framework. Novel aspects of this method include: 1) efficient algorithms for sampling the object category models of our choice and 2) the observation that a sampling-based approximation of the expected log-likelihood of the model can be increased by a single graph cut. Results are presented on several articulated (e.g., animals) and nonarticulated (e.g., fruits) object categories. We provide a favorable comparison of our method with the state of the art in object category specific image segmentation, specifically the methods of Leibe and Schiele and Schoenemann and Cremers.
机译:我们提出了一种用于分割图像中特定对象类别的实例的概率方法。我们的方法克服了基于传统网格条件随机场(CRF)的先前分割技术的不足,即1)他们要求用户提供前景和背景的种子像素; 2)由于特定形状,它们提供较差的先验到网格CRF的较小邻域大小。具体来说,我们自动获得给定图像中对象的姿势,而不是依靠手动交互。此外,我们采用了一种概率模型,该模型包括对象的形状势能,以合并在整个图像中具有全局性的自上而下的信息,此外,网格势能还提供了先前方法中使用的自下而上的信息。形状电势由使用对象类别模型获得的对象的姿势提供。我们使用新颖的分层图片结构模型来表示明确的对象类别。非铰接对象类别使用一组示例建模。这些对象类别模型的优势在于它们可以处理较大的类内形状,外观和空间变化。我们开发了一种有效的方法OBJCUT,以使用我们的概率框架获得细分。该方法的新颖方面包括:1)用于对我们选择的对象类别模型进行采样的高效算法,以及2)可以通过单个图割来增加模型的预期对数似然性的基于采样的逼近。结果按几种铰接的(例如动物)和非铰接的(例如水果)对象类别显示。我们将我们的方法与特定对象类别的图像分割技术(特别是Leibe和Schiele和Schoenemann和Cremers)的方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号