首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Eye Movement Analysis for Activity Recognition Using Electrooculography
【24h】

Eye Movement Analysis for Activity Recognition Using Electrooculography

机译:眼动分析用于眼电活动识别

获取原文
获取原文并翻译 | 示例

摘要

In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signalsȁ4;saccades, fixations, and blinksȁ4;and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities.
机译:在这项工作中,我们将眼动分析作为一种新的感知活动的感知方式进行研究。使用眼动描记法(EOG)系统记录眼动数据。我们首先描述和评估用于从EOG信号ȁ4,扫视,注视和眨眼ȁ4检测三种眼动特征的算法,并提出一种评估眼动重复模式的方法。然后,我们根据这些特征设计90个不同的特征,并使用最小冗余最大相关性(mRMR)特征选择来选择它们的子集。我们使用五个活动类别的示例集在办公室环境中使用八名参与者进行研究,以验证该方法:复制文本,阅读印刷纸,做手写笔记,观看视频以及浏览Web。我们还包括没有特定活动的句点(NULL类)。使用支持向量机(SVM)分类器和独立于人(离开一个人)的培训,我们在所有班级和参与者中的平均准确度均为76.1%,召回率为70.5%。这项工作证明了基于眼的活动识别(EAR)的前景,并就EAR在其他难以或什至不可能使用普通感应方式进行检测的活动中的广泛应用展开了讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号