首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces
【24h】

Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces

机译:用于P300检测的卷积神经网络及其在脑机接口中的应用

获取原文
获取原文并翻译 | 示例

摘要

A Brain-Computer Interface (BCI) is a specific type of human-computer interface that enables the direct communication between human and computers by analyzing brain measurements. Oddball paradigms are used in BCI to generate event-related potentials (ERPs), like the P300 wave, on targets selected by the user. A P300 speller is based on this principle, where the detection of P300 waves allows the user to write characters. The P300 speller is composed of two classification problems. The first classification is to detect the presence of a P300 in the electroencephalogram (EEG). The second one corresponds to the combination of different P300 responses for determining the right character to spell. A new method for the detection of P300 waves is presented. This model is based on a convolutional neural network (CNN). The topology of the network is adapted to the detection of P300 waves in the time domain. Seven classifiers based on the CNN are proposed: four single classifiers with different features set and three multiclassifiers. These models are tested and compared on the Data set II of the third BCI competition. The best result is obtained with a multiclassifier solution with a recognition rate of 95.5 percent, without channel selection before the classification. The proposed approach provides also a new way for analyzing brain activities due to the receptive field of the CNN models.
机译:脑机接口(BCI)是一种特定类型的人机接口,它可以通过分析脑部测量值来实现人机之间的直接通信。 BCI中使用了奇数范例,以在用户选择的目标上生成事件相关电位(ERP),例如P300波。 P300拼写器基于此原理,通过检测P300波形,用户可以编写字符。 P300拼写器由两个分类问题组成。第一种分类是检测脑电图(EEG)中是否存在P300。第二个对应于用于确定正确拼写字符的不同P300响应的组合。提出了一种检测P300波的新方法。该模型基于卷积神经网络(CNN)。网络的拓扑适合于在时域中检测P300波。提出了基于CNN的七个分类器:四个具有不同特征集的单个分类器和三个多重分类器。这些模型在第三届BCI竞赛的数据集II上进行了测试和比较。使用多分类器解决方案可获得最佳结果,其识别率为95.5%,无需在分类之前进行通道选择。所提出的方法还提供了一种新的方法来分析由于CNN模型的接受场而引起的大脑活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号