首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Fast Rotation Invariant 3D Feature Computation Utilizing Efficient Local Neighborhood Operators
【24h】

Fast Rotation Invariant 3D Feature Computation Utilizing Efficient Local Neighborhood Operators

机译:利用高效的局部邻域算子进行快速旋转不变3D特征计算

获取原文
获取原文并翻译 | 示例

摘要

We present a method for densely computing local rotation invariant image descriptors in volumetric images. The descriptors are based on a transformation to the harmonic domain, which we compute very efficiently via differential operators. We show that this fast voxelwise computation is restricted to a family of basis functions that have certain differential relationships. Building upon this finding, we propose local descriptors based on the Gaussian Laguerre and spherical Gabor basis functions and show how the coefficients can be computed efficiently by recursive differentiation. We exemplarily demonstrate the effectiveness of such dense descriptors in a detection and classification task on biological 3D images. In a direct comparison to existing volumetric features, among them 3D SIFT, our descriptors reveal superior performance.
机译:我们提出了一种在体积图像中密集计算局部旋转不变图像描述符的方法。描述符基于对谐波域的转换,我们可以通过差分算子非常有效地进行计算。我们表明,这种快速的三维计算被限制在具有某些微分关系的一系列基函数中。基于此发现,我们提出基于高斯Laguerre和球面Gabor基函数的局部描述符,并展示如何通过递归微分有效地计算系数。我们示例性地证明了这种密集描述符在生物3D图像的检测和分类任务中的有效性。与现有的三维特征(包括3D SIFT)进行直接比较,我们的描述符显示出卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号