首页> 外文期刊>Circuits, systems and signal processing >Fast Computation of 3D Discrete Invariant Moments Based on 3D Cuboid for 3D Image Classification
【24h】

Fast Computation of 3D Discrete Invariant Moments Based on 3D Cuboid for 3D Image Classification

机译:基于3D立方体进行3D图像分类的3D离散矩的快速计算

获取原文
获取原文并翻译 | 示例

摘要

The use of 3D discrete orthogonal invariant moments as descriptors of images constitutes one of the hot topics in the field of 3D image analysis, especially in the recognition and classification of deformed objects, due to their high numerical precision and low computing complexity. The TSR (translation, scale and rotation) invariant functions of discrete orthogonal moments can be obtained by expressing them as a linear combination of the corresponding invariant of geometric moments. This classical method is very expensive in time due to the long time allocated to compute the polynomial coefficients when complex or large 3D images are used. This main drawback eliminates the use of these moments in the recognition and classification fields of 3D objects. In this article, we propose a fast and efficient method for calculating 3D discrete orthogonal invariant moments of Hahn, Tchebichef, Krawtchouk, Meixner and Charlier of 3D image. This proposed method is based on the extraction of the 3D discrete orthogonal invariant moments from the 3D geometric invariant moments of the entire 3D image, using the 3D image cuboid representation (ICR) strategy, where each cuboid is treated independently. The proposed method has the advantage of accelerating the process of extracting the 3D discrete invariant moments compared with the classical method. The performance of the proposed method is evaluated in terms of the calculation time and classification accuracy using a set of 3D images. Instead of some examples of using the discrete orthogonal invariant moments of Hahn, Tchebichef, Krawtchouk, Meixner and Charlier as pattern features for pattern classification are also provided.
机译:使用3D离散正交不变时刻作为图像描述符构成了3D图像分析领域的一个热门话题,尤其是由于其高的数值精度和低计算复杂性而变形对象的识别和分类。通过将它们表达为几何时矩的相应不变的线性组合,可以获得离散正交矩的TSR(转换,刻度和旋转)不变函数。由于在使用复杂或大3D图像时,该经典方法及时在时间上昂贵。该主要缺点消除了在3D对象的识别和分类字段中使用这些时刻。在本文中,我们提出了一种快速有效地计算哈恩,Tchebichef,Krawtchouk,Meixner和3D图像Charlier的3D离散正交的矩。该提出的方法基于从整个3D图像的3D几何不变矩的3D离散正交的矩,使用3D图像长方体表示(ICR)策略,其中每个长方体被独立处理。该方法具有加速与经典方法相比提取3D离散的不变矩的过程的优点。在使用一组3D图像的计算时间和分类精度方面评估所提出的方法的性能。还提供了使用Hahn,Tchebichef,Krawtchouk,Meixner和Charlier的离散正交不变矩的一些示例,而是作为模式分类的模式特征。

著录项

  • 来源
    《Circuits, systems and signal processing》 |2021年第8期|3782-3812|共31页
  • 作者单位

    Univ Sidi Mohamed Ben Abdellah Fac Sci Dhar El Mahrez Lab Elect Signals & Syst Informat LESSI CED ST STIC Fes Morocco;

    Univ Sidi Mohamed Ben Abdellah Fac Sci Dhar El Mahrez Lab Elect Signals & Syst Informat LESSI CED ST STIC Fes Morocco;

    Univ Sidi Mohamed Ben Abdellah Fac Sci Dhar El Mahrez Lab Elect Signals & Syst Informat LESSI CED ST STIC Fes Morocco;

    Sidi Mohamed Ben Abdellah Univ Natl Sch Appl Sci Engn Syst & Applicat Lab BP 72 My Abdallah Ave Km 5 Imouzzer Rd Fes Morocco;

    Sidi Mohamed Ben Abdellah Univ Natl Sch Appl Sci Engn Syst & Applicat Lab BP 72 My Abdallah Ave Km 5 Imouzzer Rd Fes Morocco;

    Univ Sidi Mohamed Ben Abdellah Fac Sci Dhar El Mahrez Lab Elect Signals & Syst Informat LESSI CED ST STIC Fes Morocco;

    Sidi Mohamed Ben Abdellah Univ Lab Comp Sci & Interdisciplinary Phys LIPI Fes Morocco;

    Sidi Mohamed Ben Abdellah Univ Fac Med & Pharm Clin Neurosci Lab Fes Morocco|Univ Hosp Fez Dept Radiol & Clin Imaging Fes Morocco;

    Sidi Mohamed Ben Abdellah Univ Fac Med & Pharm Dept Biophys & Clin MRI Methods BP 893 Km 2-200 Sidi Hrazem Rd Fes 30000 Morocco|Sidi Mohamed Ben Abdellah Univ Fac Med & Pharm Clin Neurosci Lab Fes Morocco|Univ Hosp Fez Dept Radiol & Clin Imaging Fes Morocco;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Discrete orthogonal moments; 3D geometric invariant moments; 3D invariant moments; 3D image cuboid representation; 3D object classification;

    机译:离散正交矩;3D几何不变矩;3D不变矩;3D图像长方体表示;3D对象分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号