首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Spacetime Texture Representation and Recognition Based on a Spatiotemporal Orientation Analysis
【24h】

Spacetime Texture Representation and Recognition Based on a Spatiotemporal Orientation Analysis

机译:基于时空取向分析的时空纹理表示与识别

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the representation and recognition of the observed dynamics (i.e., excluding purely spatial appearance cues) of spacetime texture based on a spatiotemporal orientation analysis. The term ȁC;spacetime textureȁD; is taken to refer to patterns in visual spacetime, (x,y,t), that primarily are characterized by the aggregate dynamic properties of elements or local measurements accumulated over a region of spatiotemporal support, rather than in terms of the dynamics of individual constituents. Examples include image sequences of natural processes that exhibit stochastic dynamics (e.g., fire, water, and windblown vegetation) as well as images of simpler dynamics when analyzed in terms of aggregate region properties (e.g., uniform motion of elements in imagery, such as pedestrians and vehicular traffic). Spacetime texture representation and recognition is important as it provides an early means of capturing the structure of an ensuing image stream in a meaningful fashion. Toward such ends, a novel approach to spacetime texture representation and an associated recognition method are described based on distributions (histograms) of spacetime orientation structure. Empirical evaluation on both standard and original image data sets shows the promise of the approach, including significant improvement over alternative state-of-the-art approaches in recognizing the same pattern from different viewpoints.
机译:本文涉及基于时空取向分析的时空纹理的观察到的动力学(即,不包括纯空间外观提示)的表示和识别。术语ȁC;时空纹理ȁD;被认为是指视觉时空(x,y,t)中的模式,其主要特征是元素的总动态特性或在时空支持区域内累积的局部测量值,而不是单个成分的动态。示例包括表现出随机动力学(例如,火,水和风吹草木)的自然过程的图像序列,以及根据集合区域属性(例如,图像中元素(例如行人)的均匀运动)进行分析时,较简单的动力学图像。和车辆交通)。时空纹理表示和识别非常重要,因为它提供了一种以有意义的方式捕获后续图像流结构的早期方法。为此,基于时空取向结构的分布(直方图)描述了一种新颖的时空纹理表示方法和相关的识别方法。对标准图像数据集和原始图像数据集的经验评估都表明了该方法的前景,包括在从不同角度识别相同模式方面,替代了其他现有技术的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号