首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Action Spotting and Recognition Based on a Spatiotemporal Orientation Analysis
【24h】

Action Spotting and Recognition Based on a Spatiotemporal Orientation Analysis

机译:基于时空定向分析的动作识别与识别

获取原文
获取原文并翻译 | 示例

摘要

This paper provides a unified framework for the interrelated topics of action spotting, the spatiotemporal detection and localization of human actions in video, and action recognition, the classification of a given video into one of several predefined categories. A novel compact local descriptor of video dynamics in the context of action spotting and recognition is introduced based on visual spacetime oriented energy measurements. This descriptor is efficiently computed directly from raw image intensity data and thereby forgoes the problems typically associated with flow-based features. Importantly, the descriptor allows for the comparison of the underlying dynamics of two spacetime video segments irrespective of spatial appearance, such as differences induced by clothing, and with robustness to clutter. An associated similarity measure is introduced that admits efficient exhaustive search for an action template, derived from a single exemplar video, across candidate video sequences. The general approach presented for action spotting and recognition is amenable to efficient implementation, which is deemed critical for many important applications. For action spotting, details of a real-time GPU-based instantiation of the proposed approach are provided. Empirical evaluation of both action spotting and action recognition on challenging datasets suggests the efficacy of the proposed approach, with state-of-the-art performance documented on standard datasets.
机译:本文为动作识别,视频中人类动作的时空检测和定位以及动作识别,将给定视频分类为几个预定义类别之一的相关主题提供了一个统一的框架。基于面向视觉时空的能量测量,引入了一种新颖的紧凑的动态视频局部描述符,用于动作点识别。直接从原始图像强度数据中有效地计算出该描述符,从而避免了通常与基于流的特征相关联的问题。重要的是,描述符允许比较两个时空视频片段的基本动态,而与空间外观无关,例如服装引起的差异以及对杂波的鲁棒性。引入了相关的相似性度量,该度量允许跨候选视频序列有效地穷举搜索从单个示例性视频派生的动作模板。提出的用于动作识别和识别的一般方法适合有效执行,这对于许多重要应用程序而言至关重要。对于动作识别,提供了所提出方法的基于GPU的实时实例的详细信息。对具有挑战性的数据集进行动作识别和动作识别的经验评估表明,该方法的有效性,标准数据集上记录了最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号