首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Building Development Monitoring in Multitemporal Remotely Sensed Image Pairs with Stochastic Birth-Death Dynamics
【24h】

Building Development Monitoring in Multitemporal Remotely Sensed Image Pairs with Stochastic Birth-Death Dynamics

机译:具有随机出生死亡动态的多时间遥感影像对中的建筑物发展监测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. We present methodological contributions in three key issues: 1) We implement a novel object-change modeling approach based on Multitemporal Marked Point Processes, which simultaneously exploits low-level change information between the time layers and object-level building description to recognize and separate changed and unaltered buildings. 2) To answer the challenges of data heterogeneity in aerial and satellite image repositories, we construct a flexible hierarchical framework which can create various building appearance models from different elementary feature-based modules. 3) To simultaneously ensure the convergence, optimality, and computation complexity constraints raised by the increased data quantity, we adopt the quick Multiple Birth and Death optimization technique for change detection purposes, and propose a novel nonuniform stochastic object birth process which generates relevant objects with higher probability based on low-level image features.
机译:在本文中,我们介绍了一种新的概率方法,该方法将建筑物提取与变化检测集成在遥感图像对中。考虑到观察到的数据,先验知识以及相邻建筑物各部分之间的相互作用,全局优化过程会尝试找到建筑物的最佳配置。我们在三个关键问题上提出了方法学上的贡献:1)我们实现了一种基于多时间标记点过程的新颖的对象更改建模方法,该方法同时利用时间层之间的低级更改信息和对象级建筑物描述来识别和分离更改和不变的建筑物。 2)为了解决航空和卫星图像存储库中数据异质性的挑战,我们构建了一个灵活的分层框架,该框架可以从基于基本要素的不同模块中创建各种建筑物外观模型。 3)为了同时确保由增加的数据量引起的收敛性,最优性和计算复杂性约束,我们采用快速的多重生死优化技术来进行变化检测,并提出了一种新颖的非均匀随机对象出生过程,该过程生成具有相关性的对象。基于低级图像特征的较高概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号