首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Coprime Blur Scheme for Data Security in Video Surveillance
【24h】

A Coprime Blur Scheme for Data Security in Video Surveillance

机译:用于视频监控的数据安全性的共质模糊方案

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel coprime blurred pair (CBP) model to improve data security in camera surveillance. While most previous approaches have focused on completely encrypting the video stream, we introduce a spatial encryption scheme by strategically blurring the image/video contents. Specifically, we form a public stream and a private stream by blurring the original video data using two different kernels. Each blurred stream will provide the user who has lower clearance less access to personally identifiable details while still allowing behavior to be monitored. If the behavior is recognized as suspicious, a supervisor can use both streams to deblur the contents. Our approach is based on a new CBP theory where the two kernels are coprime when mapped to bivariate polynomials in the $(z)$ domain. We show that coprimality can be derived in terms of the rank of Bézout matrix formed by sampled polynomials, and we present an efficient algorithm to factor the Bézout matrix for recovering the latent image. To make our solution practical, we implement our decryption scheme on a graphics processing unit (GPU) to achieve real-time performance. Extensive experiments demonstrate that our new scheme can effectively protect sensitive identity information in surveillance videos and faithfully reconstruct the unblurred video stream when both CBP sequences are available.
机译:本文提出了一种新颖的互质模糊对(CBP)模型,以提高摄像机监控中的数据安全性。尽管大多数以前的方法都集中在完全加密视频流上,但我们通过策略性地模糊图像/视频内容来引入空间加密方案。具体来说,我们通过使用两个不同的内核模糊原始视频数据来形成公共流和私有流。每个模糊流将为具有较低权限的用户提供较少的访问权限,以使他们无法访问个人可识别的详细信息,同时仍允许监视行为。如果该行为被认为可疑,则主管可以使用两个流对内容进行模糊处理。我们的方法基于新的CBP理论,其中两个内核在映射到$(z)$域中的双变量多项式时是互质的。我们表明,可以根据采样多项式形成的Bézout矩阵的秩推导共素性,并且我们提出了一种有效的算法来分解Bézout矩阵以恢复潜像。为了使我们的解决方案切实可行,我们在图形处理单元(GPU)上实施了解密方案,以实现实时性能。大量实验表明,当两个CBP序列均可用时,我们的新方案可以有效地保护监视视频中的敏感身份信息,并忠实地重建不模糊的视频流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号