首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Pose-Robust Recognition of Low-Resolution Face Images
【24h】

Pose-Robust Recognition of Low-Resolution Face Images

机译:低分辨率人脸图像的姿态鲁棒识别

获取原文
获取原文并翻译 | 示例

摘要

Face images captured by surveillance cameras usually have poor resolution in addition to uncontrolled poses and illumination conditions, all of which adversely affect the performance of face matching algorithms. In this paper, we develop a completely automatic, novel approach for matching surveillance quality facial images to high-resolution images in frontal pose, which are often available during enrollment. The proposed approach uses multidimensional scaling to simultaneously transform the features from the poor quality probe images and the high-quality gallery images in such a manner that the distances between them approximate the distances had the probe images been captured in the same conditions as the gallery images. Tensor analysis is used for facial landmark localization in the low-resolution uncontrolled probe images for computing the features. Thorough evaluation on the Multi-PIE dataset and comparisons with state-of-the-art super-resolution and classifier-based approaches are performed to illustrate the usefulness of the proposed approach. Experiments on surveillance imagery further signify the applicability of the framework. We also show the usefulness of the proposed approach for the application of tracking and recognition in surveillance videos.
机译:除不受控制的姿势和照明条件外,监视摄像机捕获的面部图像通常具有较差的分辨率,所有这些都会不利地影响面部匹配算法的性能。在本文中,我们开发了一种全自动的新颖方法,用于将监视质量的面部图像与正面姿势的高分辨率图像进行匹配,这些图像通常在注册过程中可用。所提出的方法使用多维缩放来同时转换劣质探针图像和高质量画廊图像中的特征,使得它们之间的距离近似于在与画廊图像相同的条件下捕获探针图像的距离。 。张量分析用于低分辨率不受控制的探针图像中的面部界标定位,以计算特征。进行了对Multi-PIE数据集的全面评估,并与最新的超分辨率和基于分类器的方法进行了比较,以说明所提出方法的有效性。监视图像的实验进一步表明了该框架的适用性。我们还展示了拟议方法在监视视频中应用跟踪和识别的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号