首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Optimizing Nondecomposable Loss Functions in Structured Prediction
【24h】

Optimizing Nondecomposable Loss Functions in Structured Prediction

机译:在结构化预测中优化不可分解损失函数

获取原文
获取原文并翻译 | 示例

摘要

We develop an algorithm for structured prediction with nondecomposable performance measures. The algorithm learns parameters of Markov Random Fields (MRFs) and can be applied to multivariate performance measures. Examples include performance measures such as $(F_{beta })$ score (natural language processing), intersection over union (object category segmentation), Precision/Recall at k (search engines), and ROC area (binary classifiers). We attack this optimization problem by approximating the loss function with a piecewise linear function. The loss augmented inference forms a Quadratic Program (QP), which we solve using LP relaxation. We apply this approach to two tasks: object class-specific segmentation and human action retrieval from videos. We show significant improvement over baseline approaches that either use simple loss functions or simple scoring functions on the PASCAL VOC and H3D Segmentation datasets, and a nursing home action recognition dataset.
机译:我们开发了一种具有不可分解性能指标的结构化预测算法。该算法学习马尔可夫随机场(MRF)的参数,可应用于多元性能测度。示例包括性能指标,例如$(F_ {beta})$分数(自然语言处理),并集相交(对象类别分割),k处的精确度/召回率(搜索引擎)和ROC区域(二进制分类器)。我们通过用分段线性函数近似损失函数来解决此优化问题。损失增加推断形成二次程序(QP),我们使用LP松弛来解决。我们将此方法应用于两项任务:特定于对象类的细分和从视频中检索人为行为。我们显示出相对于在PASCAL VOC和H3D细分数据集以及疗养院行动识别数据集上使用简单损失函数或简单评分函数的基线方法的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号