首页> 外文学位 >Optimizing non-decomposable loss functions in structured prediction.
【24h】

Optimizing non-decomposable loss functions in structured prediction.

机译:在结构化预测中优化不可分解的损失函数。

获取原文
获取原文并翻译 | 示例

摘要

Learning functional dependencies (mapping) between arbitrary input and output spaces is one of the main challenges in computational intelligence. There have been two main threads in the literature for solving this problem -- one focusing on designing more discriminative representation of the input and another one focusing on designing flexible mapping functions.;Interestingly, for many applications, the outputs follow a structure, which can be exploited to narrow down the space of possible (most likely) outputs and consequently boost the overall mapping performance. Applications with this property include object detection (computer vision), object category segmentation (computer vision), parsing (natural language processing), etc.;Current algorithms for learning the parameters of the model in structured prediction iteratively find the most confusing output configuration -- the configuration that receives high score according to the model, but is very different from the ground truth output -- and update the model parameters to suppress its score. Here, finding the most confusing configuration is the most expensive procedure in learning.;In this thesis we propose two algorithms for approximately finding the most confusing configuration when the model is a Markov network. Each algorithm works for a large group of non-decomposable performance measures that arise in many real-world applications. We first design a baseline that achieves state-of-the-art results in our main application of object category segmentation on person class by introducing fine and coarse clothing texture cues as a set of new features. Then, we propose our first algorithm that approximates the non-decomposable loss function in false positive and false negative space with a piecewise planar function and finds the most confusing output in each piece. Our second proposed algorithm decomposes the dual of the objective into a supermodular Markov random field and the loss function augmented with a linear term -- both being efficient to optimize.;We empirically show the superiority of the two proposed algorithms over our baseline and another strong baseline -- both used widely in the literature -- on two main applications, object category segmentation (on PASCAL VOC 2009 and 2010 and H3D datasets) and action retrieval (on our nursing home dataset).
机译:学习任意输入和输出空间之间的功能依赖关系(映射)是计算智能中的主要挑战之一。文献中有两个主要线程可以解决此问题-一个专注于设计输入的更具区分性的表示形式,另一个专注于设计灵活的映射函数。;有趣的是,对于许多应用程序来说,输出遵循一种结构,可以利用它来缩小可能(最可能)输出的空间,从而提高整体映射性能。具有此属性的应用包括对象检测(计算机视觉),对象类别分割(计算机视觉),解析(自然语言处理)等;用于在结构化预测中学习模型参数的当前算法可以迭代地找到最令人困惑的输出配置- -根据模型获得高分的配置,但与地面真相输出有很大不同-并更新模型参数以抑制其得分。在这里,找到最混乱的配置是学习中最昂贵的过程。在本文中,我们提出了两种算法,用于在模型是马尔可夫网络时近似地找到最混乱的配置。每种算法都适用于在许多实际应用中出现的大量不可分解的性能指标。我们首先设计一个基准线,该基准线通过引入精细和粗糙的衣服纹理提示作为一组新功能,在将对象类别细分应用于人类的主要应用中达到最先进的结果。然后,我们提出了我们的第一个算法,该算法使用分段平面函数逼近假正和假负空间中的不可分解损失函数,并找到每块中最令人困惑的输出。我们提出的第二种算法将目标的对偶分解为超模马尔可夫随机场,并用线性项扩展了损失函数-二者均能高效优化;我们从经验上证明了这两种提议的算法优于基线和另一种强大的算法。基线-在文献中都广泛使用-在两个主要应用上,对象类别细分(在PASCAL VOC 2009和2010和H3D数据集上)和动作检索(在我们的疗养院数据集上)。

著录项

  • 作者

    Ranjbar, Mani.;

  • 作者单位

    Simon Fraser University (Canada).;

  • 授予单位 Simon Fraser University (Canada).;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号