首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >An Automatic Iris Occlusion Estimation Method Based on High-Dimensional Density Estimation
【24h】

An Automatic Iris Occlusion Estimation Method Based on High-Dimensional Density Estimation

机译:基于高维密度估计的虹膜自动遮挡估计方法

获取原文
获取原文并翻译 | 示例

摘要

Iris masks play an important role in iris recognition. They indicate which part of the iris texture map is useful and which part is occluded or contaminated by noisy image artifacts such as eyelashes, eyelids, eyeglasses frames, and specular reflections. The accuracy of the iris mask is extremely important. The performance of the iris recognition system will decrease dramatically when the iris mask is inaccurate, even when the best recognition algorithm is used. Traditionally, people used the rule-based algorithms to estimate iris masks from iris images. However, the accuracy of the iris masks generated this way is questionable. In this work, we propose to use Figueiredo and Jain's Gaussian Mixture Models (FJ-GMMs) to model the underlying probabilistic distributions of both valid and invalid regions on iris images. We also explored possible features and found that Gabor Filter Bank (GFB) provides the most discriminative information for our goal. Finally, we applied Simulated Annealing (SA) technique to optimize the parameters of GFB in order to achieve the best recognition rate. Experimental results show that the masks generated by the proposed algorithm increase the iris recognition rate on both ICE2 and UBIRIS dataset, verifying the effectiveness and importance of our proposed method for iris occlusion estimation.
机译:虹膜面罩在虹膜识别中起着重要作用。它们指示虹膜纹理贴图的哪一部分有用,哪一部分被诸如睫毛,眼睑,眼镜框和镜面反射之类的嘈杂图像伪影所遮挡或污染。虹膜罩的准确性非常重要。当虹膜蒙版不准确时,即使使用最佳识别算法,虹膜识别系统的性能也会急剧下降。传统上,人们使用基于规则的算法从虹膜图像中估计虹膜蒙版。然而,以这种方式产生的虹膜掩模的准确性令人怀疑。在这项工作中,我们建议使用Figueiredo和Jain的高斯混合模型(FJ-GMM)对虹膜图像上有效区域和无效区域的潜在概率分布进行建模。我们还研究了可能的功能,并发现Gabor滤波器组(GFB)为我们的目标提供了最具区别性的信息。最后,我们应用了模拟退火(SA)技术来优化GFB的参数,以获得最佳识别率。实验结果表明,该算法生成的模板提高了ICE2和UBIRIS数据集的虹膜识别率,验证了我们提出的虹膜遮挡估计方法的有效性和重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号