首页> 美国卫生研究院文献>Journal of Digital Imaging >Automatic Estimation of Volumetric Breast Density Using Artificial Neural Network-Based Calibration of Full-Field Digital Mammography: Feasibility on Japanese Women With and Without Breast Cancer
【2h】

Automatic Estimation of Volumetric Breast Density Using Artificial Neural Network-Based Calibration of Full-Field Digital Mammography: Feasibility on Japanese Women With and Without Breast Cancer

机译:使用基于人工神经网络的全场数字乳腺X射线照相术校准自动估计乳腺密度:对有或无乳腺癌的日本女性的可行性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Breast cancer is the most common invasive cancer among women and its incidence is increasing. Risk assessment is valuable and recent methods are incorporating novel biomarkers such as mammographic density. Artificial neural networks (ANN) are adaptive algorithms capable of performing pattern-to-pattern learning and are well suited for medical applications. They are potentially useful for calibrating full-field digital mammography (FFDM) for quantitative analysis. This study uses ANN modeling to estimate volumetric breast density (VBD) from FFDM on Japanese women with and without breast cancer. ANN calibration of VBD was performed using phantom data for one FFDM system. Mammograms of 46 Japanese women diagnosed with invasive carcinoma and 53 with negative findings were analyzed using ANN models learned. ANN-estimated VBD was validated against phantom data, compared intra-patient, with qualitative composition scoring, with MRI VBD, and inter-patient with classical risk factors of breast cancer as well as cancer status. Phantom validations reached an R 2 of 0.993. Intra-patient validations ranged from R 2 of 0.789 with VBD to 0.908 with breast volume. ANN VBD agreed well with BI-RADS scoring and MRI VBD with R 2 ranging from 0.665 with VBD to 0.852 with breast volume. VBD was significantly higher in women with cancer. Associations with age, BMI, menopause, and cancer status previously reported were also confirmed. ANN modeling appears to produce reasonable measures of mammographic density validated with phantoms, with existing measures of breast density, and with classical biomarkers of breast cancer. FFDM VBD is significantly higher in Japanese women with cancer.
机译:乳腺癌是女性中最常见的浸润性癌症,其发病率正在上升。风险评估是有价值的,并且最近的方法正在纳入诸如乳腺X线摄影密度之类的新型生物标志物。人工神经网络(ANN)是能够执行模式到模式学习的自适应算法,非常适合医疗应用。它们对于校准用于定量分析的全视野数字化乳腺摄影(FFDM)可能很有用。这项研究使用ANN模型,通过FFDM评估患有和不患有乳腺癌的日本女性的乳房体积密度(VBD)。对于一个FFDM系统,使用幻像数据执行VBD的ANN校准。使用获知的ANN模型分析了46例被诊断为浸润性癌的日本女性的乳房X线照片和53例阴性的乳房X线照片。 ANN估计的VBD已针对幻象数据进行了验证,对患者进行了内部定性成分评分,MRI VBD进行了比较,对患者间具有经典的乳腺癌危险因素以及癌症状态进行了比较。幻像验证的R 2 为0.993。住院期间的验证范围从VBD的R 2 为0.789到乳腺体积为0.908。 ANN VBD与BI-RADS评分和MRI VBD吻合良好,R 2 范围从VBD的0.665到乳房体积的0.852。患有癌症的女性的VBD明显较高。还证实了先前报道的年龄,BMI,更年期和癌症状况之间的关系。人工神经网络建模似乎可以产生合理的乳腺X线摄影密度测量值,该测量值已通过幻像,现有的乳房密度测量值以及经典的乳腺癌生物标记物进行了验证。在患有癌症的日本女性中,FFDM VBD明显较高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号