首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Segmentation, Inference and Classification of Partially Overlapping Nanoparticles
【24h】

Segmentation, Inference and Classification of Partially Overlapping Nanoparticles

机译:部分重叠的纳米粒子的分割,推断和分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a method that enables automated morphology analysis of partially overlapping nanoparticles in electron micrographs. In the undertaking of morphology analysis, three tasks appear necessary: separate individual particles from an agglomerate of overlapping nano-objects; infer the particle's missing contours; and ultimately, classify the particles by shape based on their complete contours. Our specific method adopts a two-stage approach: the first stage executes the task of particle separation, and the second stage conducts simultaneously the tasks of contour inference and shape classification. For the first stage, a modified ultimate erosion process is developed for decomposing a mixture of particles into markers, and then, an edge-to-marker association method is proposed to identify the set of evidences that eventually delineate individual objects. We also provided theoretical justification regarding the separation capability of the first stage. In the second stage, the set of evidences become inputs to a Gaussian mixture model on B-splines, the solution of which leads to the joint learning of the missing contour and the particle shape. Using twelve real electron micrographs of overlapping nanoparticles, we compare the proposed method with seven state-of-the-art methods. The results show the superiority of the proposed method in terms of particle recognition rate.
机译:本文提出了一种方法,该方法能够在电子显微照片中对部分重叠的纳米粒子进行自动形态分析。在进行形态分析时,需要完成三个任务:从重叠的纳米物体的团块中分离出单个粒子;推断粒子的缺失轮廓;最后,根据粒子的完整轮廓按形状对它们进行分类。我们的特定方法采用两个阶段的方法:第一阶段执行粒子分离的任务,第二阶段同时执行轮廓推断和形状分类的任务。在第一阶段,开发了一种改进的最终腐蚀工艺,用于将颗粒混合物分解为标记物,然后,提出了一种边缘到标记物的关联方法,以识别最终描绘单个物体的证据集。我们还提供了有关第一阶段分离能力的理论依据。在第二阶段,这组证据成为B样条曲线上高斯混合模型的输入,其解决方案导致对缺失轮廓和粒子形状的联合学习。使用重叠纳米颗粒的十二个真实电子显微照片,我们将所提出的方法与七个最新方法进行了比较。结果表明,该方法在粒子识别率方面具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号