首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Fast Cost-Volume Filtering for Visual Correspondence and Beyond
【24h】

Fast Cost-Volume Filtering for Visual Correspondence and Beyond

机译:快速的成本邮件过滤,实现视觉对应和超越

获取原文
获取原文并翻译 | 示例

摘要

Many computer vision tasks can be formulated as labeling problems. The desired solution is often a spatially smooth labeling where label transitions are aligned with color edges of the input image. We show that such solutions can be efficiently achieved by smoothing the label costs with a very fast edge-preserving filter. In this paper, we propose a generic and simple framework comprising three steps: 1) constructing a cost volume, 2) fast cost volume filtering, and 3) Winner-Takes-All label selection. Our main contribution is to show that with such a simple framework state-of-the-art results can be achieved for several computer vision applications. In particular, we achieve 1) disparity maps in real time whose quality exceeds those of all other fast (local) approaches on the Middlebury stereo benchmark, and 2) optical flow fields which contain very fine structures as well as large displacements. To demonstrate robustness, the few parameters of our framework are set to nearly identical values for both applications. Also, competitive results for interactive image segmentation are presented. With this work, we hope to inspire other researchers to leverage this framework to other application areas.
机译:许多计算机视觉任务可以表述为标签问题。理想的解决方案通常是空间平滑的标签,其中标签过渡与输入图像的颜色边缘对齐。我们证明,通过使用非常快速的边缘保留过滤器来平滑标签成本,可以有效地实现此类解决方案。在本文中,我们提出了一个通用且简单的框架,该框架包括三个步骤:1)构建成本量; 2)快速成本量过滤;以及3)Winner-Takes-All标签选择。我们的主要贡献是表明,使用这种简单的框架,可以在几种计算机视觉应用程序中实现最新的结果。特别是,我们获得了1)实时的视差图,其质量超过了Middlebury立体声基准上的所有其他快速(局部)方法的视差图,以及2)包含非常精细的结构和大位移的光流场。为了展示鲁棒性,我们将两个应用程序的框架中的几个参数设置为几乎相同的值。此外,提出了交互式图像分割的竞争结果。通过这项工作,我们希望启发其他研究人员将该框架用于其他应用领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号