首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >PatchMatch Filter: Edge-Aware Filtering Meets Randomized Search for Visual Correspondence
【24h】

PatchMatch Filter: Edge-Aware Filtering Meets Randomized Search for Visual Correspondence

机译:PatchMatch过滤器:边缘感知过滤符合视觉对应的随机搜索

获取原文
获取原文并翻译 | 示例

摘要

Though many tasks in computer vision can be formulated elegantly as pixel-labeling problems, a typical challenge discouraging such a discrete formulation is often due to computational efficiency. Recent studies on fast cost volume filtering based on efficient edge-aware filters provide a fast alternative to solve discrete labeling problems, with the complexity independent of the support window size. However, these methods still have to step through the entire cost volume exhaustively, which makes the solution speed scale linearly with the label space size. When the label space is huge or even infinite, which is often the case for (subpixel-accurate) stereo and optical flow estimation, their computational complexity becomes quickly unacceptable. Developed to search approximate nearest neighbors rapidly, the PatchMatch method can significantly reduce the complexity dependency on the search space size. But, its pixel-wise randomized search and fragmented data access within the 3D cost volume seriously hinder the application of efficient cost slice filtering. This paper presents a generic and fast computational framework for general multi-labeling problems called PatchMatch Filter (PMF). We explore effective and efficient strategies to weave together these two fundamental techniques developed in isolation, i.e., PatchMatch-based randomized search and efficient edge-aware image filtering. By decompositing an image into compact superpixels, we also propose superpixel-based novel search strategies that generalize and improve the original PatchMatch method. Further motivated to improve the regularization strength, we propose a simple yet effective cross-scale consistency constraint, which handles labeling estimation for large low-textured regions more reliably than a single-scale PMF algorithm. Focusing on dense correspondence field estimation in this paper, we demonstrate PMF’s applications in stereo and optical flow. Our PMF methods achieve top-tier correspondence accuracy but run much faster than other related competing methods, often giving over 10-100 times speedup.
机译:尽管可以将计算机视觉中的许多任务优雅地表述为像素标记问题,但阻止此类离散表述的典型挑战通常是由于计算效率所致。基于有效的边缘感知过滤器的快速成本量过滤的最新研究为解决离散的标签问题提供了一种快速的替代方法,其复杂性与支持窗口的大小无关。但是,这些方法仍然必须详尽地遍历整个成本量,这使得解决方案速度与标签空间大小成线性比例关系。当标签空间很大或什至无限时(这对于(亚像素准确)的立体声和光流估计来说通常是这种情况),其计算复杂度很快变得无法接受。开发PatchMatch方法是为了快速搜索近似最近的邻居,可以显着降低对搜索空间大小的复杂性依赖性。但是,其在3D成本范围内的像素级随机搜索和碎片化数据访问严重阻碍了有效成本切片过滤的应用。本文提出了一种通用的快速计算框架,用于解决称为“补丁匹配过滤器”(PMF)的一般多标签问题。我们探索了有效和有效的策略,将孤立开发的这两种基本技术结合在一起,即基于PatchMatch的随机搜索和有效的边缘感知图像过滤。通过将图像分解为紧凑的超像素,我们还提出了基于超像素的新颖搜索策略,该策略可以推广和改进原始的PatchMatch方法。为了进一步提高正则化强度,我们提出了一种简单而有效的跨尺度一致性约束,该约束比单尺度PMF算法更可靠地处理大型低纹理区域的标签估计。本文以密集的对应场估计为重点,我们演示了PMF在立体声和光流中的应用。我们的PMF方法达到了顶级的通信准确性,但比其他相关竞争方法运行速度要快得多,通常可以使速度提高10到100倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号