首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Laplacian Sparse Coding, Hypergraph Laplacian Sparse Coding, and Applications
【24h】

Laplacian Sparse Coding, Hypergraph Laplacian Sparse Coding, and Applications

机译:拉普拉斯稀疏编码,超图拉普拉斯稀疏编码及其应用

获取原文
获取原文并翻译 | 示例

摘要

Sparse coding exhibits good performance in many computer vision applications. However, due to the overcomplete codebook and the independent coding process, the locality and the similarity among the instances to be encoded are lost. To preserve such locality and similarity information, we propose a Laplacian sparse coding (LSc) framework. By incorporating the similarity preserving term into the objective of sparse coding, our proposed Laplacian sparse coding can alleviate the instability of sparse codes. Furthermore, we propose a Hypergraph Laplacian sparse coding (HLSc), which extends our Laplacian sparse coding to the case where the similarity among the instances defined by a hypergraph. Specifically, this HLSc captures the similarity among the instances within the same hyperedge simultaneously, and also makes the sparse codes of them be similar to each other. Both Laplacian sparse coding and Hypergraph Laplacian sparse coding enhance the robustness of sparse coding. We apply the Laplacian sparse coding to feature quantization in Bag-of-Words image representation, and it outperforms sparse coding and achieves good performance in solving the image classification problem. The Hypergraph Laplacian sparse coding is also successfully used to solve the semi-auto image tagging problem. The good performance of these applications demonstrates the effectiveness of our proposed formulations in locality and similarity preservation.
机译:稀疏编码在许多计算机视觉应用中表现出良好的性能。但是,由于密码本过于完整和编码过程过于独立,将导致编码实例之间的局部性和相似性丧失。为了保留此类局部性和相似性信息,我们提出了拉普拉斯稀疏编码(LSc)框架。通过将相似性保留项纳入稀疏编码的目标,我们提出的拉普拉斯稀疏编码可以减轻稀疏码的不稳定性。此外,我们提出了超图拉普拉斯稀疏编码(HLSc),它将我们的拉普拉斯稀疏编码扩展到超图定义的实例之间具有相似性的情况。具体地,该HLSc同时捕获同一超边缘内的实例之间的相似性,并且还使它们的稀疏代码彼此相似。拉普拉斯稀疏编码和超图拉普拉斯稀疏编码都增强了稀疏编码的鲁棒性。我们将拉普拉斯稀疏编码应用于词袋图像表示中的特征量化,其性能优于稀疏编码,在解决图像分类问题上取得了良好的性能。 Hypergraph Laplacian稀疏编码也已成功用于解决半自动图像标记问题。这些应用程序的良好性能证明了我们提出的配方在局部性和相似性保存方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号