首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Multi-Observation Blind Deconvolution with an Adaptive Sparse Prior
【24h】

Multi-Observation Blind Deconvolution with an Adaptive Sparse Prior

机译:自适应稀疏先验的多观测盲去卷积

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a robust algorithm for estimating a single latent sharp image given multiple blurry and/or noisy observations. The underlying multi-image blind deconvolution problem is solved by linking all of the observations together via a Bayesian-inspired penalty function, which couples the unknown latent image along with a separate blur kernel and noise variance associated with each observation, all of which are estimated jointly from the data. This coupled penalty function enjoys a number of desirable properties, including a mechanism whereby the relative-concavity or sparsity is adapted as a function of the intrinsic quality of each corrupted observation. In this way, higher quality observations may automatically contribute more to the final estimate than heavily degraded ones, while troublesome local minima can largely be avoided. The resulting algorithm, which requires no essential tuning parameters, can recover a sharp image from a set of observations containing potentially both blurry and noisy examples, without knowing a priori the degradation type of each observation. Experimental results on both synthetic and real-world test images clearly demonstrate the efficacy of the proposed method.
机译:本文介绍了一种鲁棒的算法,用于在给定多个模糊和/或嘈杂观测值的情况下估计单个潜锐图像。潜在的多图像盲反卷积问题是通过贝叶斯启发式惩罚函数将所有观测值链接在一起而解决的,该函数将未知潜像与与每个观测值关联的单独的模糊核和噪声方差耦合在一起,所有这些估计值共同从数据。这种耦合的罚函数具有许多理想的特性,包括一种机制,通过该机制,相对凹度或稀疏度将根据每个损坏的观测值的固有质量进行调整。这样,与严重退化的观测值相比,较高质量的观测值可以自动为最终估计值做出更大贡献,同时可以避免麻烦的局部最小值。最终的算法不需要基本的调节参数,可以从一组包含潜在模糊和嘈杂示例的观测值中恢复清晰的图像,而无需事先知道每个观测值的退化类型。在合成和真实测试图像上的实验结果清楚地证明了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号