首页> 外文期刊>The Visual Computer >Fast high-quality non-blind deconvolution using sparse adaptive priors
【24h】

Fast high-quality non-blind deconvolution using sparse adaptive priors

机译:使用稀疏自适应先验的快速高质量非盲卷积

获取原文
获取原文并翻译 | 示例

摘要

We present an efficient approach for high-quality non-blind deconvolution based on the use of sparse adaptive priors. Its regularization term enforces preservation of strong edges while removing noise. We model the image-prior deconvolution problem as a linear system, which is solved in the frequency domain. This clean formulation lends to a simple and efficient implementation. We demonstrate its effectiveness by performing an extensive comparison with existing non-blind deconvolution methods, and by using it to deblur photographs degraded by camera shake. Our experiments show that our solution is faster and its results tend to have higher peak signal-to-noise ratio than the state-of-the-art techniques. Thus, it provides an attractive alternative to perform high-quality non-blind deconvolution of large images, as well as to be used as the final step of blind-deconvolution algorithms.
机译:我们提出了一种基于稀疏自适应先验的高质量非盲反卷积的有效方法。它的正则化术语可以在保留强力边缘的同时消除噪声。我们将图像优先解卷积问题建模为线性系统,该问题在频域中得以解决。这种干净的配方有助于实现简单有效的实施。我们通过与现有的非盲反卷积方法进行广泛的比较,并使用它对由于相机抖动而退化的照片进行模糊处理,来证明其有效性。我们的实验表明,与现有技术相比,我们的解决方案速度更快,并且其结果倾向于具有更高的峰值信噪比。因此,它为执行大图像的高质量非盲反卷积以及用作盲反卷积算法的最后步骤提供了一种有吸引力的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号