首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Covariate Shift Adaptation for Discriminative 3D Pose Estimation
【24h】

Covariate Shift Adaptation for Discriminative 3D Pose Estimation

机译:协方差平移自适应判别式3D姿势估计

获取原文
获取原文并翻译 | 示例

摘要

Discriminative, or (structured) prediction, methods have proved effective for variety of problems in computer vision; a notable example is 3D monocular pose estimation. All methods to date, however, relied on an assumption that training (source) and test (target) data come from the same underlying joint distribution. In many real cases, including standard data sets, this assumption is flawed. In the presence of training set bias, the learning results in a biased model whose performance degrades on the (target) test set. Under the assumption of covariate shift, we propose an unsupervised domain adaptation approach to address this problem. The approach takes the form of training instance reweighting, where the weights are assigned based on the ratio of training and test marginals evaluated at the samples. Learning with the resulting weighted training samples alleviates the bias in the learned models. We show the efficacy of our approach by proposing weighted variants of kernel regression (KR) and twin Gaussian processes (TGP). We show that our weighted variants outperform their unweighted counterparts and improve on the state-of-the-art performance in the public (HumanEva) data set.
机译:歧视性(结构化)预测方法已被证明对计算机视觉中的各种问题有效。一个著名的例子是3D单眼姿势估计。但是,迄今为止,所有方法都基于这样的假设,即训练(源)和测试(目标)数据来自相同的基础联合分布。在许多实际情况下,包括标准数据集,这种假设都是有缺陷的。在存在训练集偏差的情况下,学习会导致产生一个偏差模型,该模型的性能在(目标)测试集中会降低。在协变量偏移的假设下,我们提出了一种无监督域自适应方法来解决此问题。该方法采用训练实例重加权的形式,其中权重是根据样本评估的训练和测试边际之比分配的。通过生成的加权训练样本进行学习可以减轻学习模型中的偏差。通过提出核回归(KR)和双高斯过程(TGP)的​​加权变体,我们展示了我们方法的有效性。我们表明,加权变体优于未加权的变体,并改进了公共(HumanEva)数据集的最新性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号