首页> 外文期刊>Computer vision and image understanding >3D Human pose estimation: A review of the literature and analysis of covariates
【24h】

3D Human pose estimation: A review of the literature and analysis of covariates

机译:3D人体姿势估计:文献综述和协变量分析

获取原文
获取原文并翻译 | 示例

摘要

Estimating the pose of a human in 3D given an image or a video has recently received significant attention from the scientific community. The main reasons for this trend are the ever increasing new range of applications (e.g., human-robot interaction, gaming, sports performance analysis) which are driven by current technological advances. Although recent approaches have dealt with several challenges and have reported remarkable results, 3D pose estimation remains a largely unsolved problem because real-life applications impose several challenges which are not fully addressed by existing methods. For example, estimating the 3D pose of multiple people in an outdoor environment remains a largely unsolved problem. In this paper, we review the recent advances in 3D human pose estimation from RGB images or image sequences. We propose a taxonomy of the approaches based on the input (e.g., single image or video, monocular or multi-view) and in each case we categorize the methods according to their key characteristics. To provide an overview of the current capabilities, we conducted an extensive experimental evaluation of state-of-the-art approaches in a synthetic dataset created specifically for this task, which along with its ground truth is made publicly available for research purposes. Finally, we provide an in-depth discussion of the insights obtained from reviewing the literature and the results of our experiments. Future directions and challenges are identified.
机译:在给定图像或视频的情况下,以3D方式估计人的姿势已引起科学界的极大关注。造成这种趋势的主要原因是受当前技术进步推动的新的应用范围不断增加(例如,人机交互,游戏,运动表现分析)。尽管最近的方法已经解决了数个挑战并报告了显着的结果,但是3D姿态估计仍然是一个未解决的问题,因为现实生活中的应用会带来数个挑战,而这些挑战是现有方法无法完全解决的。例如,估计室外环境中多个人的3D姿势仍然是一个悬而未决的问题。在本文中,我们回顾了从RGB图像或图像序列进行3D人体姿势估计的最新进展。我们建议根据输入法(例如,单幅图像或视频,单眼或多视图)对这些方法进行分类,并在每种情况下根据其关键特征对这些方法进行分类。为了提供当前功能的概述,我们在专门为此任务创建的综合数据集中对最新方法进行了广泛的实验评估,该数据集及其基本事实已公开用于研究目的。最后,我们提供了对通过回顾文献和实验结果而获得的见解的深入讨论。确定了未来的方向和挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号