首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Video Event Detection: From Subvolume Localization to Spatiotemporal Path Search
【24h】

Video Event Detection: From Subvolume Localization to Spatiotemporal Path Search

机译:视频事件检测:从子体积定位到时空路径搜索

获取原文
获取原文并翻译 | 示例

摘要

Although sliding window-based approaches have been quite successful in detecting objects in images, it is not a trivial problem to extend them to detecting events in videos. We propose to search for spatiotemporal paths for video event detection. This new formulation can accurately detect and locate video events in cluttered and crowded scenes, and is robust to camera motions. It can also well handle the scale, shape, and intraclass variations of the event. Compared to event detection using spatiotemporal sliding windows, the spatiotemporal paths correspond to the event trajectories in the video space, thus can better handle events composed by moving objects. We prove that the proposed search algorithm can achieve the global optimal solution with the lowest complexity. Experiments are conducted on realistic video data sets with different event detection tasks, such as anomaly event detection, walking person detection, and running detection. Our proposed method is compatible with different types of video features or object detectors and robust to false and missed local detections. It significantly improves the overall detection and localization accuracy over the state-of-the-art methods.
机译:尽管基于滑动窗口的方法已经非常成功地检测图像中的对象,但是将其扩展到检测视频中的事件并不是一个简单的问题。我们建议搜索时空路径以进行视频事件检测。这种新的公式可以准确地检测和定位混乱和拥挤场景中的视频事件,并且对摄像机运动具有鲁棒性。它还可以很好地处理事件的规模,形状和类内变化。与使用时空滑动窗口进行事件检测相比,时空路径与视频空间中的事件轨迹相对应,因此可以更好地处理由移动对象组成的事件。我们证明了所提出的搜索算法可以以最低的复杂度实现全局最优解。针对具有不同事件检测任务的现实视频数据集进行了实验,例如异常事件检测,步行者检测和跑步检测。我们提出的方法与不同类型的视频特征或对象检测器兼容,并且对错误和遗漏的局部检测具有鲁棒性。与最新方法相比,它显着提高了整体检测和定位精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号