首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >CNN-Based Multiple Path Search for Action Tube Detection in Videos
【24h】

CNN-Based Multiple Path Search for Action Tube Detection in Videos

机译:基于CNN的多路径搜索视频中的动作管检测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an effective two-stream convolutional neural network (CNN)-based approach to detect multiple spatial-temporal action tubes in videos. A novel video localization refinement (VLR) scheme is first addressed to iteratively rectify the potentially inaccurate bounding boxes by exploiting the temporal consistency between adjacent frames. Then, to provide more faithful detection scores, a new fusion strategy is considered, which combines not only the appearance and the flow information of the two-stream networks but also the motion saliency, the latter of which is included to address the small camera motion. In addition, an efficient multiple path search (MPS) algorithm is developed to simultaneously identify multiple paths in a single run. In the forward message passing of MPS, each node stores information of a prescribed number of connections based on the accumulated scores determined in the previous stages. A backward path tracing is invoked afterward to find all multiple paths at the same time by fully reusing the information generated in the forward pass without repeating the search process. Thus, the complexity incurred can be reduced. The simulation results show that, together with VLR and the new fusion scheme, the proposed MPS, in general, can provide superior performance compared with the state-of-the-art works on four public datasets.
机译:本文介绍了一种有效的两流卷积神经网络(CNN),基于视频中的多个空间动作管。首先通过利用相邻帧之间的时间一致性,首先寻址新颖的视频定位细化(VLR)方案以迭代纠正可能的不准确的边界框。然后,为了提供更忠实的检测分数,考虑了一种新的融合策略,这不仅结合了两流网络的外观和流量信息,而且结合了运动显着性,其中包括的后者包括在内地解决小型摄像机运动。另外,开发了一种有效的多路搜索(MPS)算法以同时在单个运行中识别多个路径。在MPS的前向消息传递中,每个节点基于在先前阶段中确定的累计分数存储规定数量的连接数的信息。之后调用向后路径跟踪以通过在不重复搜索过程的情况下完全重用在前向通过中生成的信息来查找所有多个路径。因此,可以减少产生的复杂性。仿真结果表明,与VLR和新的融合方案一起,拟议的MPS,一般来说,与四个公共数据集中的最先进的工作相比,可以提供卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号