首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Entropy-Rate Clustering: Cluster Analysis via Maximizing a Submodular Function Subject to a Matroid Constraint
【24h】

Entropy-Rate Clustering: Cluster Analysis via Maximizing a Submodular Function Subject to a Matroid Constraint

机译:熵速率聚类:通过最大化受拟阵约束的子模函数的聚类分析

获取原文
获取原文并翻译 | 示例

摘要

We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes and penalizes larger clusters that aggressively group samples. We present a novel graph construction for the graph associated with the data and show that this construction induces a matroid--a combinatorial structure that generalizes the concept of linear independence in vector spaces. The clustering result is given by the graph topology that maximizes the objective function under the matroid constraint. By exploiting the submodular and monotonic properties of the objective function, we develop an efficient greedy algorithm. Furthermore, we prove an approximation bound of $({1over 2})$ for the optimality of the greedy solution. We validate the proposed algorithm on various benchmarks and show its competitive performances with respect to popular clustering algorithms. We further apply it for the task of superpixel segmentation. Experiments on the Berkeley segmentation data set reveal its superior performances over the state-of-the-art superpixel segmentation algorithms in all the standard evaluation metrics.
机译:我们提出了一个新的聚类目标函数。该目标函数由两个部分组成:图上的随机游走的熵率和平衡项。熵率有利于形成紧凑且均质的簇,而平衡功能则鼓励具有相似大小的簇,并对那些积极地对样品进行分组的较大簇进行惩罚。我们为与数据相关的图提供了一种新颖的图结构,并表明这种结构可诱发拟阵-一种组合结构,可概括矢量空间中线性独立性的概念。图拓扑给出了聚类结果,该拓扑在拟阵约束下最大化了目标函数。通过利用目标函数的亚模和单调性质,我们开发了一种高效的贪婪算法。此外,我们证明了贪婪解的最优性$({1over 2})$的近似边界。我们在各种基准上验证了该算法,并展示了其相对于流行的聚类算法的竞争性能。我们进一步将其应用于超像素分割的任务。在所有标准评估指标中,对Berkeley细分数据集的实验都显示出其优于最新的超像素细分算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号