首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Flexible Clustered Multi-Task Learning by Learning Representative Tasks
【24h】

Flexible Clustered Multi-Task Learning by Learning Representative Tasks

机译:通过学习代表性任务进行灵活的集群式多任务学习

获取原文
获取原文并翻译 | 示例

摘要

Multi-task learning (MTL) methods have shown promising performance by learning multiple relevant tasks simultaneously, which exploits to share useful information across relevant tasks. Among various MTL methods, clustered multi-task learning (CMTL) assumes that all tasks can be clustered into groups and attempts to learn the underlying cluster structure from the training data. In this paper, we present a new approach for CMTL, called flexible clustered multi-task (FCMTL), in which the cluster structure is learned by identifying representative tasks. The new approach allows an arbitrary task to be described by multiple representative tasks, effectively soft-assigning a task to multiple clusters with different weights. Unlike existing counterpart, the proposed approach is more flexible in that (a) it does not require clusters to be disjoint, (b) tasks within one particular cluster do not have to share information to the same extent, and (c) the number of clusters is automatically inferred from data. Computationally, the proposed approach is formulated as a row-sparsity pursuit problem. We validate the proposed FCMTL on both synthetic and real-world data sets, and empirical results demonstrate that it outperforms many existing MTL methods.
机译:通过同时学习多个相关任务,多任务学习(MTL)方法已显示出令人鼓舞的性能,该方法可以在相关任务之间共享有用的信息。在各种MTL方法中,集群多任务学习(CMTL)假定可以将所有任务分为几类,并尝试从训练数据中学习基础的集群结构。在本文中,我们提出了一种用于CMTL的新方法,称为灵活集群多任务(FCMTL),其中通过识别代表性任务来学习集群结构。新方法允许任意任务由多个代表性任务描述,从而有效地将任务软分配给具有不同权重的多个集群。与现有的方法不同,该提议的方法更加灵活,因为(a)不需要群集不相交,(b)一个特定群集中的任务不必共享相同程度的信息,并且(c)集群是根据数据自动推断的。在计算上,所提出的方法被公式化为行稀疏追踪问题。我们在合成数据集和实际数据集上都验证了所提出的FCMTL,并且经验结果表明,它优于许多现有的MTL方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号