首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Multi-Instance Classification by Max-Margin Training of Cardinality-Based Markov Networks
【24h】

Multi-Instance Classification by Max-Margin Training of Cardinality-Based Markov Networks

机译:基于基数的马尔可夫网络的最大余量训练进行多实例分类

获取原文
获取原文并翻译 | 示例

摘要

We propose a probabilistic graphical framework for multi-instance learning (MIL) based on Markov networks. This framework can deal with different levels of labeling ambiguity (i.e., the portion of positive instances in a bag) in weakly supervised data by parameterizing cardinality potential functions. Consequently, it can be used to encode different cardinality-based multi-instance assumptions, ranging from the standard MIL assumption to more general assumptions. In addition, this framework can be efficiently used for both binary and multiclass classification. To this end, an efficient inference algorithm and a discriminative latent max-margin learning algorithm are introduced to train and test the proposed multi-instance Markov network models. We evaluate the performance of the proposed framework on binary and multi-class MIL benchmark datasets as well as two challenging computer vision tasks: cyclist helmet recognition and human group activity recognition. Experimental results verify that encoding the degree of ambiguity in data can improve classification performance.
机译:我们提出了基于马尔可夫网络的多实例学习(MIL)的概率图形框架。通过对基数潜在函数进行参数化设置,此框架可以处理弱监督数据中不同级别的标签歧义度(即,袋子中阳性实例的一部分)。因此,它可以用于编码不同的基于基数的多实例假设,范围从标准MIL假设到更一般的假设。另外,该框架可以有效地用于二进制和多类分类。为此,引入了有效的推理算法和判别性潜在最大余量学习算法,以训练和测试所提出的多实例马尔可夫网络模型。我们在二进制和多类MIL基准数据集以及两项具有挑战性的计算机视觉任务上评估了所提出框架的性能:骑单车的头盔识别和人类活动识别。实验结果证明,对数据中的歧义度进行编码可以提高分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号