首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Face Association for Videos Using Conditional Random Fields and Max-Margin Markov Networks
【24h】

Face Association for Videos Using Conditional Random Fields and Max-Margin Markov Networks

机译:使用条件随机场和Max-Margin Markov网络的视频人脸关联

获取原文
获取原文并翻译 | 示例

摘要

We address the video-based face association problem, in which one attempts to extract the face tracks of multiple subjects while maintaining label consistency. Traditional tracking algorithms have difficulty in handling this task, especially when challenging nuisance factors like motion blur, low resolution or significant camera motions are present. We demonstrate that contextual features, in addition to face appearance itself, play an important role in this case. We propose principled methods to combine multiple features using Conditional Random Fields and Max-Margin Markov networks to infer labels for the detected faces. Different from many existing approaches, our algorithms work in online mode and hence have a wider range of applications. We address issues such as parameter learning, inference and handling false positvesegatives that arise in the proposed approach. Finally, we evaluate our approach on several public databases.
机译:我们解决了基于视频的人脸关联问题,在该问题中,人们尝试在保持标签一致性的同时提取多个主题的人脸轨迹。传统的跟踪算法很难处理此任务,尤其是当存在诸如运动模糊,低分辨率或摄像机运动明显等令人讨厌的麻烦因素时。我们证明,除了面部外观本身之外,上下文特征在这种情况下也起着重要作用。我们提出了使用条件随机场和Max-Margin Markov网络来组合多个特征的有原则的方法,以推断出检测到的人脸的标签。与许多现有方法不同,我们的算法以在线模式工作,因此具有广泛的应用范围。我们解决诸如参数学习,推论和处理在所提出的方法中出现的错误假设/否定之类的问题。最后,我们在几个公共数据库上评估我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号