首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Object Instance Segmentation and Fine-Grained Localization Using Hypercolumns
【24h】

Object Instance Segmentation and Fine-Grained Localization Using Hypercolumns

机译:使用超列的对象实例分割和精细定位

获取原文
获取原文并翻译 | 示例

摘要

Recognition algorithms based on convolutional networks (CNNs) typically use the output of the last layer as a feature representation. However, the information in this layer may be too coarse spatially to allow precise localization. On the contrary, earlier layers may be precise in localization but will not capture semantics. To get the best of both worlds, we define the hypercolumn at a pixel as the vector of activations of all CNN units above that pixel. Using hypercolumns as pixel descriptors, we show results on three fine-grained localization tasks: simultaneous detection and segmentation, where we improve state-of-the-art from 49.7 mean APr to 62.4, keypoint localization, where we get a 3.3 point boost over a strong regression baseline using CNN features, and part labeling, where we show a 6.6 point gain over a strong baseline.
机译:基于卷积网络(CNN)的识别算法通常将最后一层的输出用作特征表示。但是,该层中的信息在空间上可能太粗糙,无法进行精确定位。相反,较早的层在定位上可能很精确,但不会捕获语义。为了获得两全其美的效果,我们将像素处的超柱定义为该像素上方所有CNN单元的激活向量。使用超列作为像素描述符,我们展示了三个细粒度的定位任务的结果:同时检测和分段,其中将最新技术从49.7的平均APr提升至62.4,关键点的定位,获得了3.3点的提升使用CNN功能和零件标签的强大回归基线,在这里我们显示出比强大基线高6.6点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号