首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Zero-Shot Learning Using Synthesised Unseen Visual Data with Diffusion Regularisation
【24h】

Zero-Shot Learning Using Synthesised Unseen Visual Data with Diffusion Regularisation

机译:使用合成的看不见的视觉数据和扩散正则化进行零射学习

获取原文
获取原文并翻译 | 示例

摘要

Sufficient training examples are the fundamental requirement for most of the learning tasks. However, collecting well-labelled training examples is costly. Inspired by Zero-shot Learning (ZSL) that can make use of visual attributes or natural language semantics as an intermediate level clue to associate low-level features with high-level classes, in a novel extension of this idea, we aim to synthesise training data for novel classes using only semantic attributes. Despite the simplicity of this idea, there are several challenges. First, how to prevent the synthesised data from over-fitting to training classes? Second, how to guarantee the synthesised data is discriminative for ZSL tasks? Third, we observe that only a few dimensions of the learnt features gain high variances whereas most of the remaining dimensions are not informative. Thus, the question is how to make the concentrated informationndiffusento most of the dimensions of synthesised data. To address the above issues, we propose a novel embedding algorithm namednUnseen Visual Data Synthesisn(UVDS) that projects semantic features to the high-dimensional visual feature space. Two main techniques are introduced in our proposed algorithm. (1) We introduce a latent embedding space which aims to reconcile the structural difference between the visual and semantic spaces, meanwhile preserve the local structure. (2) We propose a novelnDiffusion Regularisationn(DR) that explicitly forces the variances to diffuse over most dimensions of the synthesised data. By an orthogonal rotation (more precisely, an orthogonal transformation), DR can remove the redundant correlated attributes and further alleviate the over-fitting problem. On four benchmark datasets, we demonstrate the benefit of using synthesised unseen data for zero-shot learning. Extensive experimental results suggest that our proposed approach significantly outperforms the state-of-the-art methods.
机译:足够的培训示例是大多数学习任务的基本要求。但是,收集标记良好的培训示例非常昂贵。受到零击学习(ZSL)的启发,它可以利用视觉属性或自然语言语义作为将低级功能与高级类相关联的中间级线索,在这种思想的新颖扩展中,我们旨在综合训练仅使用语义属性的新颖类的数据。尽管这个想法很简单,但是仍然存在一些挑战。首先,如何防止综合数据过度适合培训课程?其次,如何保证合成数据对于ZSL任务是有区别的?第三,我们观察到学习特征的只有少数维度获得高方差,而其余大多数维度都没有提供信息。因此,问题是如何使集中的信息n 扩散到大多数合成数据维度。为了解决上述问题,我们提出了一种新颖的嵌入算法,名为n 看不见的视觉数据综合 n(UVDS),它将语义特征投影到高维视觉特征空间。我们提出的算法引入了两种主要技术。 (1)我们引入了一个潜在的嵌入空间,旨在调和视觉和语义空间之间的结构差异,同时保留局部结构。 (2)我们提出了Noveln <斜体xmlns:mml =“ http://www.w3.org/1998/Math/MathML” xmlns:xlink =“ http://www.w3.org/1999/xlink”>扩散正则化 n(DR)明确迫使方差扩散到合成数据的大多数维度上。通过正交旋转(更准确地说是正交变换),DR可以删除冗余的相关属性,从而进一步缓解过拟合问题。在四个基准数据集上,我们证明了使用合成的看不见的数据进行零射学习的好处。大量的实验结果表明,我们提出的方法明显优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号