首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Face-from-Depth for Head Pose Estimation on Depth Images
【24h】

Face-from-Depth for Head Pose Estimation on Depth Images

机译:基于深度的脸部深度图像的头姿势估计

获取原文
获取原文并翻译 | 示例

摘要

Depth cameras allow to set up reliable solutions for people monitoring and behavior understanding, especially when unstable or poor illumination conditions make unusable common RGB sensors. Therefore, we propose a complete framework for the estimation of the head and shoulder pose based on depth images only. A head detection and localization module is also included, in order to develop a complete end-to-end system. The core element of the framework is a Convolutional Neural Network, called POSEidon(+), that receives as input three types of images and provides the 3D angles of the pose as output. Moreover, a Face-from-Depth component based on a Deterministic Conditional GAN model is able to hallucinate a face from the corresponding depth image. We empirically demonstrate that this positively impacts the system performances. We test the proposed framework on two public datasets, namely Biwi Kinect Head Pose and ICT-3DHP, and on Pandora, a new challenging dataset mainly inspired by the automotive setup. Experimental results show that our method overcomes several recent state-of-art works based on both intensity and depth input data, running in real-time at more than 30 frames per second.
机译:深度摄像机可为人们的监视和行为理解设置可靠的解决方案,尤其是在不稳定或恶劣的照明条件使普通RGB传感器无法使用时。因此,我们提出了一个仅基于深度图像的头和肩姿势估计的完整框架。还包括一个头部检测和定位模块,以便开发一个完整的端到端系统。该框架的核心元素是一个称为POSEidon(+)的卷积神经网络,它接收三种类型的图像作为输入,并提供姿势的3D角度作为输出。此外,基于确定性条件GAN模型的“深度人脸”组件能够根据相应的深度图像对人脸产生幻觉。我们凭经验证明这对系统性能产生积极影响。我们在两个公共数据集(Biwi Kinect Head Pose和ICT-3DHP)以及Pandora(一个主要受汽车设置启发的具有挑战性的新数据集)上测试了提议的框架。实验结果表明,我们的方法克服了基于强度和深度输入数据的最新技术,以每秒30帧以上的速度实时运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号