首页> 外文期刊>Cybernetics, IEEE Transactions on >Context-Aware Deep Spatiotemporal Network for Hand Pose Estimation From Depth Images
【24h】

Context-Aware Deep Spatiotemporal Network for Hand Pose Estimation From Depth Images

机译:背景知识的深蓝色空网,从深度图像施加姿势估算

获取原文
获取原文并翻译 | 示例

摘要

As a fundamental and challenging problem in computer vision, hand pose estimation aims to estimate the hand joint locations from depth images. Typically, the problems are modeled as learning a mapping function from images to hand joint coordinates in a data-driven manner. In this paper, we propose a context-aware deep spatiotemporal network, a novel method to jointly model the spatiotemporal properties for hand pose estimation. Our proposed network is able to learn the representations of the spatial information and the temporal structure from the image sequences. Moreover, by adopting the adaptive fusion method, the model is capable of dynamically weighting different predictions to lay emphasis on sufficient context. Our method is examined on two common benchmarks, the experimental results demonstrate that our proposed approach achieves the best or the second-best performance with the state-of-the-art methods and runs in 60 fps.
机译:作为计算机视觉中的基本和具有挑战性的问题,手姿势估计旨在从深度图像估计手联结位置。通常,这些问题被建模为学习从图像以数据驱动方式手部坐标的映射函数。在本文中,我们提出了一种情境感知深瞬发网络,一种新的方法,共同模拟手姿势估计的时空性质。我们所提出的网络能够从图像序列中学习空间信息和时间结构的表示。此外,通过采用自适应融合方法,该模型能够动态加权不同的预测,以强调足够的上下文。我们的方法是在两个常见的基准上进行检查,实验结果表明,我们的拟议方法通过最先进的方法实现了最佳或第二个最佳性能,并在60 FPS中运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号