首页> 外文期刊>Journal of circuits, systems and computers >Learning a Deep Regression Forest for Head Pose Estimation from a Single Depth Image
【24h】

Learning a Deep Regression Forest for Head Pose Estimation from a Single Depth Image

机译:从单一深度图像学习头部姿势估计的深度回归林

获取原文
获取原文并翻译 | 示例

摘要

Robust head pose estimation significantly improves the performance of applications related to face analysis in Cyber-Physical Systems (CPS) such as driving assistance and expression recognition. However, there exist two main challenges in this issue, i.e., the large pose variations and the property of inhomogeneous facial feature space. Head pose in large variations makes the distinguished facial features, such as nose or lips, invisible, especially in extreme cases. Additionally, features extracted from a head do not change in a stationary manner with respect to the head pose, which results in an inhomogeneous feature space. To deal with the above problems, we propose an end-to-end framework to estimate the head pose from a single depth image. To be specific, the PointNet network is adopted to automatically select distinguished facial feature points from visible surface of a head and to extract discriminative features. The Deep Regression Forest is utilized to handle the nonstationary property of the facial feature space and to learn the head pose distributions. Experimental results show that our proposed method achieves the state-of-the-art performance on the Biwi Kinect Head Pose Dataset, the Pandora Dataset and the ICT-3DHP Dataset.
机译:强大的头部姿态估计显着提高了与驾驶辅助和表达识别的网络物理系统(CPS)与面部分析相关的应用的性能。然而,在这个问题中存在两个主要挑战,即大姿势变化和不均匀面部特征空间的性质。大变化的头部姿势使杰出的面部特征,例如鼻子或嘴唇,看不见,特别是在极端情况下。另外,从头提取的特征不相对于头部姿势以固定的方式改变,这导致不均匀的特征空间。为了处理上述问题,我们提出了一个端到端的框架来估计从单个深度图像估计头部姿势。具体而言,采用注意力网络自动选择来自头部可见表面的特征面部特征点并提取鉴别特征。深度回归森林用于处理面部特征空间的非营养性,并学习头部姿势分布。实验结果表明,我们的提出方法在Biwi Kinect头部姿势数据集,Pandora DataSet和ICT-3DHP数据集中实现了最先进的性能。

著录项

  • 来源
    《Journal of circuits, systems and computers》 |2021年第8期|2150139.1-2150139.15|共15页
  • 作者单位

    Univ Elect Sci & Technol China Sch Informat & Software Engn 4 Sect 2 North Jianshe Rd Chengdu 610054 Peoples R China;

    Univ Elect Sci & Technol China Sch Informat & Software Engn 4 Sect 2 North Jianshe Rd Chengdu 610054 Peoples R China;

    Univ Elect Sci & Technol China Sch Informat & Software Engn 4 Sect 2 North Jianshe Rd Chengdu 610054 Peoples R China;

    Univ Elect Sci & Technol China Sch Informat & Software Engn 4 Sect 2 North Jianshe Rd Chengdu 610054 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Head pose estimation; point cloud; Deep Regression Forest;

    机译:头部姿势估计;点云;深回归森林;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号