首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Context-Aware Query Selection for Active Learning in Event Recognition
【24h】

Context-Aware Query Selection for Active Learning in Event Recognition

机译:事件识别中主动学习的上下文感知查询选择

获取原文
获取原文并翻译 | 示例

摘要

Activity recognition is a challenging problem with many practical applications. In addition to the visual features, recent approaches have benefited from the use of context, e.g., inter-relationships among the activities and objects. However, these approaches require data to be labeled, entirely available beforehand, and not designed to be updated continuously, which make them unsuitable for surveillance applications. In contrast, we propose a continuous-learning framework for context-aware activity recognition from unlabeled video, which has two distinct advantages over existing methods. First, it employs a novel active-learning technique that not only exploits the informativeness of the individual activities but also utilizes their contextual information during query selection; this leads to significant reduction in expensive manual annotation effort. Second, the learned models can be adapted online as more data is available. We formulate a conditional random field model that encodes the context and devise an information-theoretic approach that utilizes entropy and mutual information of the nodes to compute the set of most informative queries, which are labeled by a human. These labels are combined with graphical inference techniques for incremental updates. We provide a theoretical formulation of the active learning framework with an analytic solution. Experiments on six challenging datasets demonstrate that our framework achieves superior performance with significantly less manual labeling.
机译:在许多实际应用中,活动识别是一个具有挑战性的问题。除了视觉特征之外,最近的方法还受益于上下文的使用,例如活动和对象之间的相互关系。但是,这些方法要求对数据进行标记,事先完全可用,并且不能连续更新,这使其不适用于监视应用程序。相反,我们提出了一个连续学习框架,用于从未标记视频中识别上下文感知的活动,与现有方法相比,它具有两个明显的优势。首先,它采用了一种新颖的主动学习技术,该技术不仅可以利用各个活动的信息性,而且可以在查询选择期间利用其上下文信息。这大大减少了昂贵的手动注释工作。第二,随着可用数据的增加,可以在线调整学习的模型。我们制定了一个条件随机场模型来对上下文进行编码,并设计出一种信息理论方法,该方法利用节点的熵和互信息来计算大多数信息查询集,这些查询由人来标记。这些标签与图形推断技术结合使用以进行增量更新。我们为主动学习框架提供了理论上的解析解决方案。在六个具有挑战性的数据集上进行的实验表明,我们的框架以更少的手动标记实现了卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号