首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >CNN-Based Real-Time Dense Face Reconstruction with Inverse-Rendered Photo-Realistic Face Images
【24h】

CNN-Based Real-Time Dense Face Reconstruction with Inverse-Rendered Photo-Realistic Face Images

机译:基于CNN的实时密集人脸逆向渲染的真实感人脸图像

获取原文
获取原文并翻译 | 示例

摘要

With the powerfulness of convolution neural networks (CNN), CNN based face reconstruction has recently shown promising performance in reconstructing detailed face shape from 2D face images. The success of CNN-based methods relies on a large number of labeled data. The state-of-the-art synthesizes such data using a coarse morphable face model, which however has difficulty to generate detailed photo-realistic images of faces (with wrinkles). This paper presents a novel face data generation method. Specifically, we render a large number of photo-realistic face images with different attributes based on inverse rendering. Furthermore, we construct a fine-detailed face image dataset by transferring different scales of details from one image to another. We also construct a large number of video-type adjacent frame pairs by simulating the distribution of real video data.(1) With these nicely constructed datasets, we propose a coarse-to-fine learning framework consisting of three convolutional networks. The networks are trained for real-time detailed 3D face reconstruction from monocular video as well as from a single image. Extensive experimental results demonstrate that our framework can produce high-quality reconstruction but with much less computation time compared to the state-of-the-art. Moreover, our method is robust to pose, expression and lighting due to the diversity of data.
机译:凭借卷积神经网络(CNN)的强大功能,基于CNN的人脸重构最近在从2D人脸图像重构详细的人脸形状方面显示出令人鼓舞的性能。基于CNN的方法的成功取决于大量标记数据。现有技术使用粗糙的可变形人脸模型来合成这些数据,但是很难生成详细的逼真的人脸图像(带有皱纹)。本文提出了一种新颖的人脸数据生成方法。具体来说,我们基于逆渲染渲染了大量具有不同属性的真实感人脸图像。此外,我们通过将不同比例的细节从一幅图像转移到另一幅图像来构建细微的人脸图像数据集。我们还通过模拟真实视频数据的分布来构造大量视频类型的相邻帧对。(1)利用这些结构良好的数据集,我们提出了一个由三个卷积网络组成的从粗到精的学习框架。这些网络经过训练,可以从单眼视频以及单个图像进行实时详细的3D人脸重建。大量的实验结果表明,与最新技术相比,我们的框架可以产生高质量的重构,但计算时间却少得多。此外,由于数据的多样性,我们的方法在姿势,表情和光照方面都非常健壮。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号