首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >$ell _0$TV: A Sparse Optimization Method for Impulse Noise
【24h】

$ell _0$TV: A Sparse Optimization Method for Impulse Noise

机译: $ ell _0 $ TV:脉冲噪声的稀疏优化方法

获取原文
获取原文并翻译 | 示例

摘要

Total Variation (TV) is an effective and popular prior model in the field of regularization-based image processing. This paper focuses on total variation for removing impulse noise in image restoration. This type of noise frequently arises in data acquisition and transmission due to many reasons, e.g., a faulty sensor or analog-to-digital converter errors. Removing this noise is an important task in image restoration. State-of-the-art methods such as Adaptive Outlier Pursuit(AOP) [1], which is based on TV with l(02)-norm data fidelity, only give sub-optimal performance. In this paper, we propose a new sparse optimization method, called l(0)TV-PADMM, which solves the TV-based restoration problem with l(0)-norm data fidelity. To effectively deal with the resulting non-convex non-smooth optimization problem, we first reformulate it as an equivalent biconvex Mathematical Program with Equilibrium Constraints (MPEC), and then solve it using a proximal Alternating Direction Method of Multipliers (PADMM). Our l(0)TV-PADMM method finds a desirable solution to the original l(0)-norm optimization problem and is proven to be convergent under mild conditions. We apply l(0)TV-PADMM to the problems of image denoising and deblurring in the presence of impulse noise. Our extensive experiments demonstrate that l(0)TV-PADMM outperforms state-of-the-art image restoration methods.
机译:在基于正则化的图像处理领域中,总变化(TV)是一种有效且流行的先验模型。本文着重于消除图像恢复中脉冲噪声的总体变化。由于许多原因,例如传感器故障或模数转换器错误,这种类型的噪声经常在数据获取和传输中出现。消除这种噪声是图像恢复中的重要任务。最先进的方法,例如基于具有1(02)范数数据保真度的电视的自适应离群值追踪(AOP)[1],只能提供次佳的性能。在本文中,我们提出了一种新的稀疏优化方法,称为l(0)TV-PADMM,它以l(0)-范数数据保真度解决了基于电视的还原问题。为了有效地解决由此产生的非凸非平滑优化问题,我们首先将其重新构造为具有平衡约束(MPEC)的等效双凸数学程序,然后使用近端交替方向乘数法(PADMM)对其进行求解。我们的l(0)TV-PADMM方法为原始的l(0)-范数优化问题找到了理想的解决方案,并被证明在温和条件下收敛。我们将l(0)TV-PADMM应用于存在脉冲噪声的图像去噪和去模糊问题。我们广泛的实验表明,l(0)TV-PADMM优于最新的图像恢复方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号