首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Top-$k$Durable Graph Pattern Queries on Temporal Grap
【24h】

Top-$k$Durable Graph Pattern Queries on Temporal Grap

机译:顶部-<内联公式> $ k $ <另类> 时间上的持久图形模式查询

获取原文
获取原文并翻译 | 示例

摘要

Graphs offer a natural model for the relationships and interactions among entities, such as those occurring among users in social and cooperation networks, and proteins in biological networks. Since most such networks are dynamic, to capture their evolution over time, we assume a sequence of graph snapshots where each graph snapshot represents the state of the network at a different time instance. Given this sequence, we seek to find the top-$k$most durable matchesof an input graph pattern query, that is, the matches that exist for the longest period of time. The straightforward way to address this problem is to apply a state-of-the-art graph pattern matching algorithm at each snapshot and then aggregate the results. However, for large networks and long sequences, this approach is computationally expensive, since all matches have to be generated at each snapshot, including those appearing only once. We propose a new approach that uses a compact representation of the sequence of graph snapshots, appropriate time indexes to prune the search space, and strategies to determine the duration of the seeking matches. Finally, we present experiments with real datasets that illustrate the efficiency and effectiveness of our approach.
机译:图为实体之间的关系和交互提供了自然模型,例如在社交和合作网络中的用户之间发生的关系以及生物网络中的蛋白质。由于大多数此类网络都是动态的,因此要捕获其随时间的演变,我们假设使用一系列图形快照,其中每个图形快照代表不同时间实例的网络状态。给定此序列,我们寻求找到顶部的 n <内联公式xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http:// www.w3.org/1999/xlink"> $ k $ n <斜体xmlns:mml = ” http://www.w3.org/1998/Math/MathML “ xmlns:xlink = ”输入图模式查询的http://www.w3.org/1999/xlink “>最持久匹配项 n,即存在时间最长的匹配项。解决此问题的直接方法是在每个快照上应用最先进的图形模式匹配算法,然后汇总结果。但是,对于大型网络和较长的序列,此方法的计算量很大,因为必须在每个快照中生成所有匹配项,包括仅出现一次的匹配项。我们提出了一种新方法,该方法使用图快照序列的紧凑表示形式,适当的时间索引来修剪搜索空间以及确定搜索匹配持续时间的策略。最后,我们使用真实的数据集进行实验,这些数据集说明了我们方法的效率和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号