首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Learning Pose-Aware Models for Pose-Invariant Face Recognition in the Wild
【24h】

Learning Pose-Aware Models for Pose-Invariant Face Recognition in the Wild

机译:在野外学习姿势感知模型以进行姿势不变的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

We propose a method designed to push the frontiers of unconstrained face recognition in the wild with an emphasis on extreme out-of-plane pose variations. Existing methods either expect a single model to learn pose invariance by training on massive amounts of data or else normalize images by aligning faces to a single frontal pose. Contrary to these, our method is designed to explicitly tackle pose variations. Our proposed Pose-Aware Models (PAM) process a face image using several pose-specific, deep convolutional neural networks (CNN). 3D rendering is used to synthesize multiple face poses from input images to both train these models and to provide additional robustness to pose variations at test time. Our paper presents an extensive analysis of the IARPA Janus Benchmark A (IJB-A), evaluating the effects that landmark detection accuracy, CNN layer selection, and pose model selection all have on the performance of the recognition pipeline. It further provides comparative evaluations on IJB-A and the PIPA dataset. These tests show that our approach outperforms existing methods, even surprisingly matching the accuracy of methods that were specifically fine-tuned to the target dataset. Parts of this work previously appeared in [1] and [2].
机译:我们提出一种旨在在野外推动无约束人脸识别领域的方法,重点是极端平面外姿势变化。现有方法或者期望单个模型通过训练大量数据来学习姿势不变性,或者通过将脸部对准单个额头姿势来对图像进行归一化。与此相反,我们的方法旨在显式解决姿势变化。我们提出的姿势感知模型(PAM)使用几个特定于姿势的深度卷积神经网络(CNN)处理人脸图像。 3D渲染用于从输入图像中合成多个面部姿势,以训练这些模型并提供额外的鲁棒性以在测试时进行姿势变化。我们的论文对IARPA Janus Benchmark A(IJB-A)进行了广泛的分析,评估了界标检测精度,CNN层选择和姿势模型选择对识别流水线性能的影响。它还提供了对IJB-A和PIPA数据集的比较评估。这些测试表明,我们的方法优于现有方法,甚至出乎意料地匹配专门针对目标数据集微调的方法的准确性。这项工作的一部分以前出现在[1]和[2]中。

著录项

  • 来源
  • 作者单位

    Univ Southern Calif, Inst Robot & Intelligent Syst, Los Angeles, CA 90007 USA;

    Univ Southern Calif, Inst Robot & Intelligent Syst, Los Angeles, CA 90007 USA;

    Univ Southern Calif, Inst Robot & Intelligent Syst, Los Angeles, CA 90007 USA;

    Open Univ Israel, IL-4353701 Raanana, Israel;

    Univ Southern Calif, Inst Robot & Intelligent Syst, Los Angeles, CA 90007 USA;

    Univ Southern Calif, Inst Robot & Intelligent Syst, Los Angeles, CA 90007 USA;

    Univ Southern Calif, Inst Robot & Intelligent Syst, Los Angeles, CA 90007 USA;

    Univ Southern Calif, Inst Informat Sci, Los Angeles, CA 90007 USA;

    Univ Southern Calif, Inst Informat Sci, Los Angeles, CA 90007 USA;

    Univ Southern Calif, Inst Informat Sci, Los Angeles, CA 90007 USA|Open Univ Israel, IL-4353701 Raanana, Israel;

    Univ Southern Calif, Inst Informat Sci, Los Angeles, CA 90007 USA;

    Univ Southern Calif, Inst Robot & Intelligent Syst, Los Angeles, CA 90007 USA;

    Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA;

    Univ Southern Calif, Inst Informat Sci, Los Angeles, CA 90007 USA;

    Univ Southern Calif, Inst Robot & Intelligent Syst, Los Angeles, CA 90007 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Face recognition; CNN; pose-aware;

    机译:人脸识别;CNN;姿势感知;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号